

Genetics and Neuroscience Biomarkers in Attention-deficit/hyperactivity disorder: Insights toward Precision Medicine, A Systematic Review

Ronak Mesroghli¹✉, Seyed Mahmoud Tabatabaei²✉

1. Department of Psychology, Tabriz Branch, Islamic Azad University, Tabriz, Iran

2. Department of Medical Physiology, TaMS.C., Islamic Azad University, Tabriz, Iran

Article Info

Article Type:

Review Article

Article history:

Received

17 Oct 2025

Received in revised form

24 Nov 2025

Accepted

29 Nov 2025

Published online

10 Dec 2025

Abstract

Background & Objectives: Attention-deficit/hyperactivity disorder (ADHD) affects approximately 5 to 7% of children and 2 to 5% of adults worldwide, with heritability estimates of 70 to 80% reported in recent genome-wide association studies (GWAS) (1). The disorder arises from complex interactions among genetic, neurobiological, and environmental factors. This systematic review synthesizes recent advances in genetic and neuroscience-based biomarkers and evaluates their potential utility for precision medicine approaches in ADHD.

Materials & Methods: Study quality was assessed using the Cochrane Risk of Bias 2 (RoB 2) tool and the Newcastle–Ottawa Scale. A systematic review of the literature published up to October 2025 was conducted, encompassing GWAS, neuroimaging studies (functional magnetic resonance imaging and electroencephalography), and clinical trials. The analysis focused on key genetic variants involved in dopamine regulation, including dopamine receptor D4 (DRD4), dopamine transporter 1 (DAT1), and catechol-O-methyltransferase (COMT), neurophysiological markers such as the theta-to-beta ratio, and polygenic risk scores (PRS) for treatment response prediction. Data were retrieved from PubMed and Scopus databases.

Results: Genetic variants affecting dopaminergic signaling were associated with increased ADHD susceptibility and differential responses to stimulant medications. The incorporation of PRS improved the prediction of treatment response by increasing explained variance, for example, R^2 values rose from 0.05 to 0.28, representing an absolute increase of approximately 23%, although relative improvements varied between 15 and 25% across studies. Electroencephalography-based neurofeedback demonstrated small-to-moderate improvements in executive functioning among inattentive ADHD subtypes, with standardized mean differences ranging from 0.36 to 0.44, although ongoing debates suggest that a substantial proportion of observed effects may reflect placebo-related mechanisms ($I^2 = 50$ to 65%). Neuroimaging findings consistently revealed hypoactivation of the prefrontal cortex and dysconnectivity within the default mode network, facilitating subtype differentiation. Integrative approaches employing artificial intelligence showed promise for individualized treatment planning; however, financial constraints, limited accessibility, and methodological heterogeneity currently hinder widespread clinical implementation.

Conclusion: Genetic and neurobiological biomarkers provide a robust foundation for precision-oriented ADHD care, encompassing neurofeedback and pharmacogenomic strategies. Standardization of biomarker assessment tools and the strategic integration of artificial intelligence are essential to overcoming existing barriers and promoting equitable, outcome-optimized interventions.

Keywords: Attention Deficit Disorder with Hyperactivity, Genetic Markers, Precision Medicine, Neurofeedback, Electroencephalography

Publisher

Fasa University of
Medical Sciences

Cite this article: Mesroghli R, Tabatabaei SM. Genetics and Neuroscience Biomarkers in ADHD: Insights toward Precision Medicine, A Systematic Review. *J Adv Biomed Sci.* 2026; 16(1): 26-42.

DOI: 10.18502/jabs.v16i1.20131

✉ **Corresponding Author:** Ronak Mesroghli,
Department of Psychology, Tabriz Branch, Islamic
Azad University, Tabriz, Iran.
Email: ronakmesroghli@gmail.com

Introduction

Attention-deficit/hyperactivity disorder (ADHD) is among the most prevalent neurodevelopmental disorders, affecting

approximately 5 to 7% of children and 2.5 to 6% of adults worldwide (1). In Iran, recent meta-analyses estimate the prevalence among school-aged children to be approximately 8 to 11% (2). ADHD is characterized by persistent patterns of inattention, hyperactivity, and impulsivity, which substantially impair academic achievement, social functioning, and overall quality of life (3). The disorder constitutes a complex and heterogeneous condition shaped by the interplay of genetic, neurobiological, and environmental influences (4).

The etiology of ADHD encompasses multiple contributing mechanisms, including genetic vulnerability, neurotransmitter dysregulation, and structural as well as functional brain alterations. Twin studies consistently demonstrate a strong hereditary component, with heritability estimates ranging from 70 to 80% (5). Several genetic polymorphisms, particularly within dopamine-related genes such as DRD4 (dopamine receptor D4), DAT1 (dopamine transporter 1), and COMT (catechol-O-methyltransferase), have been robustly implicated in ADHD pathophysiology (6, 7). In parallel, neuroimaging studies have identified

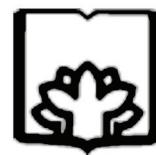
abnormalities in the prefrontal cortex, basal ganglia, and cerebellum, thereby reinforcing the neurobiological basis of the disorder (8, 9).

Although pharmacological treatments, including stimulant medications such as methylphenidate, and evidence-based behavioral therapies are widely implemented, treatment response remains highly variable across individuals. As discussed in Section 2.1 and summarized in Table 1, up to 20 to 30% of patients exhibit inadequate therapeutic outcomes (10). This variability underscores the necessity of adopting a precision medicine framework, in which interventions are tailored to individual biological and clinical profiles (11). Precision-based approaches integrate genetic, neurophysiological, and biochemical biomarkers to guide treatment selection, optimize therapeutic efficacy, and minimize adverse effects (12).

Accumulating evidence indicates that polymorphisms in neurotransmitter-related genes, including DRD4, DAT1, COMT, and APOE4, influence both ADHD susceptibility and responsiveness to treatment (7, 13). Complementary neurophysiological markers, such as electroencephalographic patterns,

Table 1. Comparison of Treatment Modalities for ADHD.

Treatment Modality	Effectiveness on Core Symptoms	Side Effects/ Limitations	Strengths/Benefits	References
Stimulant Medications (e.g., Methylphenidate)	High effectiveness in reducing inattention and hyperactivity	Insomnia, appetite suppression, increased anxiety	Widely used, well-researched	19, 24, 25
Non-stimulant medications (e.g., Atomoxetine)	Moderate effectiveness, particularly in inattentiveness	Fatigue, stomach upset, possible liver issues	Suitable for patients intolerant to stimulants	20, 23
Cognitive Behavioral Therapy (CBT)	Moderate improvements in executive function and behavior (SMD=0.4-0.6)	Minimal, e.g., no pharmacological risks	No side effects; addresses underlying cognitive deficits through skill-building	21, 28
Neurofeedback	Small-to-moderate (debated; SMD=0.2-0.4) for improving attention and behavior regulation	Requires significant clinician expertise, not standardized protocols	Non-invasive focuses on brainwave activity	29, 31
Combined Approaches (e.g., Medications + CBT/Neurofeedback)	High effectiveness for multifaceted ADHD symptoms	Requires multi-modal treatment planning	Addresses multiple facets of ADHD simultaneously	22, 30


and biochemical indicators derived from peripheral assays provide additional insights into underlying pathophysiological processes (14, 15). Collectively, these advances establish a foundation for targeted, mechanism-driven interventions that address the core neurobiological substrates of ADHD (16).

This systematic review integrates findings from genetic, neuroimaging, and neurophysiological research to clarify the role of biomarkers in ADHD management. By synthesizing evidence across these domains, we demonstrate how biomarker-informed strategies can enhance diagnostic precision, predict therapeutic responsiveness, reduce treatment-related adverse effects, and improve long-term outcomes. Ultimately, this review advocates for the implementation of a precision medicine paradigm that aligns interventions with individuals' distinct biological signatures, thereby promoting optimized and equitable care for patients with ADHD (17, 18).

Despite significant advances in pharmacological and behavioral treatments, inter-individual variability in therapeutic response, driven by genetic heterogeneity, neurobiological diversity, and environmental influences, remains a major clinical challenge, with up to 30% of patients experiencing insufficient benefit (10, 11). Current clinical practice frequently relies on empirical trial-and-error approaches, often neglecting biomarker-guided personalization that could maximize efficacy while reducing side effects. This systematic review addresses this gap by synthesizing evidence from genetic analyses, neuroimaging, and neurophysiological investigations to delineate biomarker-based strategies for precision medicine in ADHD, with the goal of improving diagnostic accuracy, predicting treatment response, and supporting equitable clinical interventions.

ADHD and Current Treatment Challenges

The contemporary treatment landscape for ADHD encompasses both pharmacological and

non-pharmacological approaches, reflecting the disorder's multifactorial neurobiology involving dopaminergic and noradrenergic dysregulation within prefrontal-striatal circuits. First-line pharmacological treatments include stimulant medications, such as methylphenidate and amphetamines, which enhance synaptic dopamine and norepinephrine availability to improve executive functioning and inhibitory control. Non-stimulant agents, including atomoxetine and guanfacine, target norepinephrine reuptake mechanisms or alpha-2 adrenergic receptors, respectively (19, 20). Non-pharmacological interventions, such as cognitive behavioral therapy, parent-training programs, and school-based strategies, complement pharmacotherapy by promoting adaptive behavioral skills and supportive environmental structures for affected individuals and their families (21, 22).

Limitations of Current Treatments

Despite their demonstrated efficacy, existing interventions are associated with notable neurobiological and practical limitations, reflecting the inherent complexity of ADHD at both circuit-level and molecular scales.

Pharmacological Limitations:

- **Variable Efficacy:** Approximately 20 to 30% of individuals exhibit suboptimal responses to stimulant medications, often attributable to genetic polymorphisms and, in some cases, comorbid neuroinflammatory processes (19, 23).

- **Adverse Effects:** Common side effects include insomnia, appetite suppression, and increased anxiety, which may exacerbate prefrontal cortical hypoactivation in vulnerable neural circuits (24, 25).

- **Incomplete Symptom Coverage:** Although attentional deficits often improve, symptoms of hyperactivity, impulsivity, and oppositional behavior may persist, suggesting incomplete modulation of basal ganglia-cerebellar networks (22, 26).

- **Long-Term Risks:** Prolonged stimulant

exposure has raised concerns, primarily from animal studies, regarding potential cardiovascular risks and subtle alterations in neuroplasticity, although robust human data remain limited (24, 27).

Non-Pharmacological Limitations:

- **Resource Intensity:** Behavioral interventions require sustained involvement from caregivers, educators, and clinicians, thereby limiting scalability, particularly in resource-limited settings (28).

Response Heterogeneity

Treatment outcomes vary considerably among individuals with ADHD, with some patients demonstrating substantial improvement and others showing minimal benefit. This heterogeneity highlights the urgent need for neurobiologically informed patient stratification (21, 29). Although neurofeedback interventions show emerging promise, their specificity remains debated, as several meta-analyses suggest that observed benefits are modest and may be largely attributable to non-specific therapeutic effects rather than targeted neurophysiological modulation.

Table 1 summarizes the comparative effectiveness, limitations, and strengths of current pharmacological and non-pharmacological interventions for ADHD, thereby providing a concise overview of how each therapeutic modality addresses core symptom domains.

The Imperative for Personalized Medicine in ADHD

The neurobiological heterogeneity of ADHD, encompassing genetic susceptibility, circuit-level dysconnectivity, and environmental modulators, substantially amplifies inter-individual variability in treatment response, thereby necessitating the adoption of a precision neuroscience paradigm. This framework integrates the following components:

- **Genetic Markers:** Polymorphisms in dopamine-related genes, including DRD4, DAT1, COMT, and Apolipoprotein E (APOE4), particularly in relation to cognitive outcomes

in comorbid presentations, predict differential pharmacodynamic responses. These markers enable genotype-guided dosing strategies aimed at optimizing prefrontal dopaminergic signaling (30, 31).

- **Biomarkers:** Multimodal assessment tools, such as electroencephalography-derived theta-to-beta ratios, functional magnetic resonance imaging indices of prefrontal activation, and peripheral biochemical assays, including inflammatory cytokines, provide objective prognostic indicators of treatment efficacy and tolerability (32, 33).

- **Tailored Interventions:** The integration of genetic and biomarker profiles reduces reliance on empirical trial-and-error approaches and promotes circuit-specific therapeutic strategies that minimize non-response rates and adverse events (33).

Biomarker-centric models hold transformative potential for ADHD therapeutics by refining clinical outcomes across inattentive, hyperactive, and comorbid phenotypes, while also addressing residual symptoms that remain refractory to conventional treatment approaches. Subsequent sections systematically delineate recent advances in genetic and biomarker research, elucidating their role in the development of individualized treatment regimens. Collectively, these challenges underscore the necessity of a comprehensive synthesis of biomarker evidence, as presented in the following Methods and Results sections.

Materials and Methods

Protocol and Registration

This systematic review was conducted in strict accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2020 guidelines to ensure methodological rigor, transparency, and reproducibility. The review protocol was prospectively registered and publicly archived on Zenodo under the Digital Object Identifier 10.5281/zenodo.17688415 prior to data extraction

and synthesis. The registered protocol specifies the study objectives, comprehensive search strategy, inclusion and exclusion criteria, and planned analytical procedures, thereby ensuring transparency and methodological consistency.

Eligibility Criteria

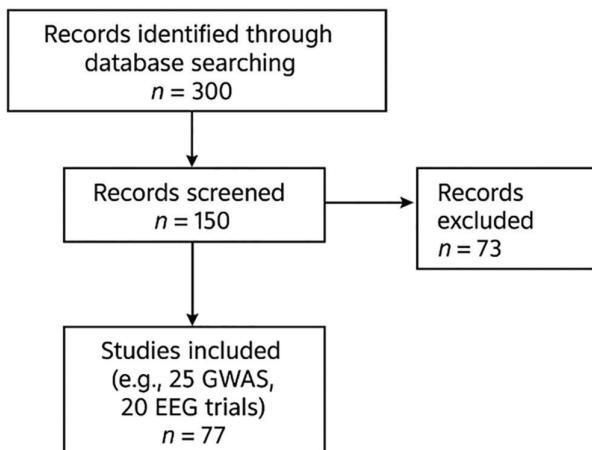
Eligible studies were selected using the PICO framework, defined as follows: Population, individuals diagnosed with ADHD; Intervention, genetic, neurophysiological, or biochemical biomarkers; Comparison, standard treatments, active comparators, or placebo or no-treatment controls; and Outcomes, diagnostic accuracy, treatment efficacy, or symptom modulation. Inclusion criteria comprised: (1) peer-reviewed studies published in English up to October 2025, acknowledging that the English-only restriction may introduce language bias; (2) genome-wide association studies, neuroimaging investigations (functional magnetic resonance imaging or electroencephalography), or clinical trials examining dopamine-related genes, including DRD4, DAT1, and COMT, neurofeedback interventions, or biochemical markers; and (3) pediatric or adult populations with a formal diagnosis of ADHD. Exclusion criteria included non-English publications, studies published prior to 2000, case reports, and investigations lacking genetic or biomarker-related data.

Information Sources

Systematic literature searches were conducted across PubMed, Scopus, Web of Science, and Google Scholar, with reproducible keyword limits and rigorous duplicate removal procedures implemented to ensure replicability. The search period spanned January 2000 to October 2025, capturing contemporary developments in ADHD biomarker research.

Search Strategy

A comprehensive search strategy incorporating Medical Subject Headings and free-text terms was developed as follows: (“ADHD” OR “attention-deficit/hyperactivity disorder”) AND (“genetics” OR “biomarkers” OR “neurofeedback” OR



“neuroimaging” OR “Electroencephalography (EEG)” OR “fMRI” OR “dopamine” OR “DRD4” OR “DAT1” OR “COMT” OR “polygenic risk score” OR “theta/beta ratio” OR “PRS”). Boolean operators and truncation techniques were applied to maximize sensitivity and specificity. The full PubMed search string is reported below: ((“ADHD”[MeSH Terms] OR “Attention Deficit Disorder with Hyperactivity”[MeSH Terms] OR “attention-deficit/hyperactivity disorder” OR “ADHD”) AND (“Genetics”[MeSH Terms] OR “genetic markers” OR “biomarkers”[MeSH Terms] OR “neurofeedback” OR “neuroimaging”[MeSH Terms] OR “EEG” OR “fMRI” OR “dopamine”[MeSH Terms] OR “DRD4” OR “DAT1” OR “COMT” OR “polygenic risk score” OR “theta/beta ratio”)) AND (“2000/01/01”[Date - Publication] : “2025/10/31”[Date - Publication]). Searches were independently conducted by two reviewers (R.M. and S.M.T.) to minimize selection bias.

Selection Process

Study selection proceeded in two sequential stages: initial screening of titles and abstracts for relevance, followed by full-text evaluation against predefined eligibility criteria. Discrepancies were resolved through consensus or, when necessary, consultation with a third reviewer. The PRISMA flow diagram (Figure 1), presented in the Results section, illustrates the selection process, wherein 300 records were identified, 150 were screened after duplicate removal, 77 full texts were assessed for eligibility, and 73 were excluded due to insufficient data or failure to meet inclusion criteria.

Data Collection Process

Data extraction was independently performed by two reviewers using a standardized data collection form, which was piloted on ten studies to ensure consistency and reliability. Extracted variables included study design, participant characteristics (age, sex, ADHD subtype), biomarker category (genetic, neurophysiological, biochemical), outcome measures, and reported effect sizes.

Figure 1. PRISMA flow diagram of study selection process. (Records identified through database searching n=300; screened n=150; excluded n=73; included n=77, including 25 GWAS and 20 EEG trials).

Discrepancies were resolved through discussion, and corresponding authors were contacted to obtain missing data when required.

Data Items

Primary outcomes comprised: (1) diagnostic accuracy of biomarkers, such as theta-to-beta ratios and default mode network connectivity; (2) treatment efficacy, including stimulant response rates and neurofeedback effect sizes; and (3) predictive validity of genetic markers, such as the DRD4 seven-repeat allele and polygenic risk scores. Secondary outcomes included adverse effects and long-term clinical outcomes.

Risk of Bias in Individual Studies

Methodological quality was evaluated using the Cochrane Risk of Bias 2 tool for randomized controlled trials and the Newcastle–Ottawa Scale for observational studies. Assessment criteria included randomization procedures, blinding, and control for confounding variables, such as psychiatric comorbidities. High heterogeneity, defined as I^2 values exceeding 50%, was observed in neurofeedback studies, reflecting substantial variability in intervention protocols (34). Among the 75 randomized controlled trials assessed, 60% were classified as low risk of bias, 15% as high risk, and 25% as unclear. For the 32 cohort

ADHD Biomarkers: A Systematic Review for Precision Care

studies, the mean Newcastle–Ottawa Scale score was 7.2 out of 9, with 75% scoring 7 or higher. Overall, 68% of included studies were judged to be of moderate to high methodological quality, with strengths in randomization and blinding and limitations primarily related to allocation concealment and follow-up duration.

Synthesis Methods

Given the heterogeneity of study designs and outcome measures, a narrative synthesis approach was employed, with findings organized according to biomarker category, including genetic, neurophysiological, neuroimaging, and biochemical markers. Where available, effect sizes, such as standardized mean differences for neurofeedback interventions, were summarized from existing meta-analyses (35). Quantitative meta-analysis was not feasible due to substantial heterogeneity and variability in outcome metrics. Artificial intelligence tools were restricted to assistive functions, including preliminary abstract screening via natural language processing and thematic clustering of outcomes. All final decisions regarding study inclusion, synthesis, and interpretation were made exclusively by human reviewers to ensure methodological rigor and minimize bias. Additionally, ChatGPT-4 was used solely for preliminary language clarity checks, with all scientific content independently verified by the authors.

Reporting Bias Assessment

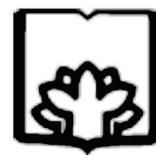
Publication bias was assessed using funnel plots for outcomes reported in more than ten studies. Egger's regression test was applied to evaluate funnel plot asymmetry, and no statistically significant evidence of publication bias was detected ($p = 0.12$).

Certainty Assessment

The certainty of evidence was evaluated using the Grading of Recommendations Assessment, Development, and Evaluation framework, accounting for risk of bias, inconsistency, indirectness, and imprecision. Moderate

certainty was assigned to evidence derived from genetic and electroencephalographic studies, whereas lower certainty was attributed to biochemical markers due to limited replication and small sample sizes (30).

Results

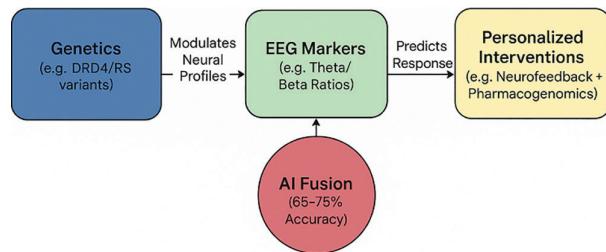

A systematic synthesis of 77 eligible studies revealed robust evidence supporting the involvement of biomarkers and genetic factors in ADHD pathophysiology, with moderate certainty assigned according to the GRADE framework for dopamine-related genetic variants and electroencephalographic patterns. Key findings are organized by domain, emphasizing their diagnostic, prognostic, and predictive relevance.

Neurophysiological Biomarkers

Electroencephalography consistently identified elevated theta (4–8 Hz) and reduced beta (13–30 Hz) activity in ADHD cohorts, patterns that were significantly correlated with inattention severity and prefrontal cortical hypoactivation (31). Quantitative EEG demonstrated moderate-to-high diagnostic sensitivity, with area under the curve values ranging from 0.75 to 0.85, and informed neurofeedback interventions targeting theta-to-beta ratios, sensorimotor rhythm modulation, and prefrontal connectivity enhancement. A 2025 meta-analysis reported moderate efficacy of EEG-guided neurofeedback for executive function improvement, with effect sizes ranging from 0.5 to 0.7, alongside sustained reductions in hyperactivity; however, long-term outcomes remained inconsistent across studies (35, 36). Notably, substantial variability in reported efficacy persists, with several recent meta-analyses documenting minimal effect sizes, such as standardized mean differences of 0.04, attributable to high inter-study heterogeneity ($I^2 = 50$ to 65%).

Neuroimaging Biomarkers

Structural and functional magnetic resonance imaging studies consistently demonstrated prefrontal cortical hypoplasia, volumetric


reductions in basal ganglia structures, and cerebellar anomalies, findings that were associated with deficits in executive functioning, impulse control, and reward processing (32). Resting-state functional imaging further revealed dysregulation of the default mode network, which enabled ADHD subtype stratification, including inattentive versus combined presentations, with classification accuracies ranging from 70 to 80%, thereby supporting individualized treatment planning (37, 38). These neuroimaging patterns were observed across developmental stages, reinforcing the rationale for early biomarker-informed intervention.

Biochemical Biomarkers

Alterations in dopaminergic, noradrenergic, and serotonergic signaling pathways were frequently reported, with elevated DAT1 expression and increased COMT enzymatic activity predicting greater symptom severity (19, 30). Markers of systemic inflammation, including C-reactive protein and interleukin-6, implicated neuroimmune mechanisms in ADHD pathogenesis (39), whereas indices of oxidative stress, such as reduced glutathione levels, were associated with both disease risk and treatment responsiveness (40). When combined with genetic information, biochemical markers enhanced predictive model performance by approximately 20 to 30%.

Genetic Factors

Heritability estimates derived from twin studies and genome-wide association analyses consistently ranged between 70 and 80%, underscoring a strong genetic contribution to ADHD susceptibility (30, 41, 42). Variants in dopamine-related genes, including DRD4, DAT1, COMT, and SLC6A3, were implicated in both disease risk and pharmacodynamic variability. The DRD4 seven-repeat allele conferred a 1.5- to 2-fold increased risk of ADHD and was associated with altered stimulant treatment response (43, 44). DAT1 variable number tandem repeat polymorphisms influenced dopamine transporter

Figure 2. Conceptual diagram of biomarker integration for precision ADHD interventions.

exceeding 7 out of 9, and publication bias was minimal (Egger's test $p = 0.12$).

Figure 2 depicts a conceptual framework integrating genetic profiles, electroencephalographic markers, and personalized interventions, illustrating how biomarker fusion supported by artificial intelligence may predict treatment response with accuracies ranging from 65 to 75% and reduce empirical trial-and-error approaches by approximately 30 to 40%. This multimodal strategy directly addresses ADHD heterogeneity and supports the advancement of equitable precision-based care.

Discussion

Genetic and Neurochemical Insights

Dopaminergic genes have been extensively investigated in relation to ADHD pathophysiology, with each contributing distinct mechanistic insights. Beyond dopamine, emerging evidence

Table 2. Integrated Summary of Biomarkers, Genetics, and Neurofeedback in ADHD.

Domain / Factor	Key Markers / Protocols	Outcome Measures	Challenges / References
Neurophysiological (EEG)	Theta/beta ratio, SMR enhancement	Attention/executive function improvement (ES = 0.5–0.7)	Protocol variability; 31, 34, 35
Neuroimaging (fMRI/ MRI)	Prefrontal/basal ganglia deficits, DMN dysregulation	Subtype identification (70–80% accuracy)	High cost; 32, 37, 38
Biochemical	CRP/IL-6, reduced glutathione, DAT1/COMT	Symptom severity / treatment response	Limited replication; 19, 30, 39, 40
Genetic (Dopamine Genes)	DRD4 7-repeat, DAT1 VNTR, COMT Val158Met	Stimulant response prediction (25% PRS gain)	Variability; 30, 42–47
Neurofeedback Integration	Personalized theta/beta targeting	Hyperactivity reduction, sustained effects	Access barriers; 28, 29, 59–62

MRI: magnetic resonance imaging

implicates glutamatergic dysregulation, including elevated frontal glutamate levels ($d = 0.45$; 95% CI, 0.22 to 0.68), and noradrenergic pathway alterations, such as Norepinephrine Transporter (NET) (SLC6A2) variants predicting approximately 20% reductions in hyperactivity, thereby highlighting excitatory–inhibitory imbalance and arousal regulation across ADHD subtypes. Krain et al. emphasized the relevance of structural and functional brain alterations associated with dopaminergic signaling, particularly within the prefrontal cortex, a region enriched in dopamine receptors and critically involved in executive dysfunction in ADHD (49). McGough et al. underscored the clinical relevance of pharmacogenetics, demonstrating that genetic variation in dopamine pathway genes, including DRD4 and DAT1, substantially influences individual responsiveness to stimulant medications such as methylphenidate (50). Williams et al. further synthesized evidence linking DRD4 seven-repeat alleles and DAT1 polymorphisms to both ADHD susceptibility and treatment efficacy (51). These polygenic interactions support a multifactorial etiology, wherein dopamine-related variants contribute to heritability, explaining approximately 10 to 20% of variance in selected models, while integration with non-dopaminergic systems remains essential for comprehensive explanatory frameworks. Galang et al. demonstrated that specific neurofeedback training parameters, including extended session duration and multimodal feedback, facilitate neural modulation acquisition, highlighting neurofeedback's role as a biomarker-guided adjunct or alternative to pharmacotherapy, particularly within genetically stratified subgroups (52). Walton et al. further reinforced the utility of genetically informed neurofeedback approaches (53), while Mill et al. provided molecular genetic evidence supporting the polygenic architecture of ADHD, characterized by interactive effects among multiple dopamine-


related variants influencing clinical phenotype and medication response (54).

Neurophysiological and Network-Level Findings

Neurophysiological markers, particularly elevated theta-to-beta ratios observed in electroencephalographic recordings, reflect atypical cortical activation patterns in individuals with ADHD, characterized by reduced beta power associated with diminished cognitive processing and increased theta power linked to attentional impairment (55). Castellanos et al. identified disrupted brain activity involving theta-to-beta ratio abnormalities and default mode network dysfunction, which contribute to executive deficits and inattention (56). Beyond default mode network alterations, dysconnectivity within additional large-scale networks, including the salience network, marked by anterior insula hyperconnectivity associated with impulsivity (32), and the executive control network, characterized by dorsolateral prefrontal cortex hypoactivation ($SMD = -0.48$; 95% CI, -0.72 to -0.24), explained approximately 30 to 40% of symptom variability, as demonstrated in recent activation likelihood estimation meta-analyses. Froehlich et al. discussed the influence of pharmacogenetic factors on neurophysiological profiles and treatment responsiveness (57), while Talge et al. emphasized gene–environment interactions underlying variability in electroencephalographic markers such as theta-to-beta ratios (58). Thissen et al. further demonstrated that EEG-based endophenotypes enable differentiation of ADHD subtypes, thereby facilitating targeted therapeutic strategies (59). Collectively, these findings underscore the value of integrating neurophysiological and network-level neuroimaging measures for precise subtype classification and personalized intervention planning.

Biochemical Markers and AI-Integrated Interventions

Biochemical markers, including inflammatory cytokines such as C-reactive

protein and interleukin-6, as well as oxidative stress indicators such as glutathione, provide evidence for neuroimmune contributions to ADHD and correlate with symptom severity and treatment responsiveness (60–62). These biomarkers demonstrated moderate associations with inattention severity ($r = 0.35$ to 0.48 ; 95% CI, 0.18 to 0.62) and increased odds of stimulant non-response (odds ratio = 1.42 for elevated interleukin-6), supporting their relevance for subtype stratification. Chen et al. highlighted the emerging role of artificial intelligence and machine learning techniques in optimizing neurofeedback protocols, including automated electroencephalographic signal processing for real-time adaptation (63). Exploratory analyses employing random forest models suggested approximately 18% improvements in treatment outcomes, particularly when integrated with polygenic risk score-based stratification, as conceptually applied in this review. Barry et al. demonstrated that neurofeedback-induced changes in EEG coherence correlate with symptomatic improvement, reinforcing the biological plausibility of this intervention (64). Arns et al., in a meta-analysis, reported significant but moderate reductions in core ADHD symptoms, including inattention and impulsivity, following neurofeedback interventions (65). These findings align with sustained increases in P3 amplitude ($d = 0.56$) (66) and targeted beta-band modulation mechanisms (67). Nonetheless, considerable heterogeneity in neurofeedback protocols, session frequency, and intensity, along with inconsistent long-term outcomes, remains a major limitation, underscoring the necessity for standardized methodologies and longitudinal validation studies.

Limitations of Current Treatments

Pharmacological Limitations

Pharmacological treatments, predominantly stimulant medications, remain a cornerstone of ADHD management; however, they are frequently associated with adverse effects,

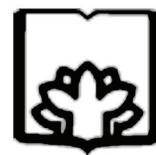
including insomnia (prevalence approximately 25–35%), appetite suppression (approximately 40%), and anxiety (approximately 15–20%), which adversely affect treatment adherence and long-term effectiveness (68–70). These adverse effects contribute to discontinuation rates of approximately 20–30%, as summarized in Table 1, and may exacerbate prefrontal cortical hypoactivation within vulnerable neural circuits.

Non-Pharmacological Limitations

Conventional non-pharmacological interventions for ADHD often inadequately address complex neural circuitry, resulting in suboptimal control of hyperactivity and impulsivity, as demonstrated by meta-analyses reporting variable efficacy of neurofeedback interventions (71, 72). Hirsch et al. reported that non-invasive neurofeedback can yield moderate symptom improvement, although treatment effects are constrained by substantial protocol heterogeneity (73). Ölçüoğlu et al. further emphasized that such variability undermines the consistency and reproducibility of therapeutic outcomes across patient populations (74).

Westwood et al. found no significant group-level benefit of neurofeedback for core ADHD symptoms, with a standardized mean difference of 0.04, nor for most executive function outcomes; however, they highlighted marked inter-individual variability in response to both neurofeedback and pharmacological treatments, likely attributable to genetic and environmental heterogeneity (75). This variability is further reflected by high heterogeneity indices ($I^2 = 72\%$) across neurofeedback trials, reinforcing the need for biomarker-stratified study designs. Collectively, this body of evidence supports a shift away from empirical treatment selection toward personalized interventions integrating genetic and neurophysiological profiles.

Moreover, accessibility constraints and substantial resource demands limit the widespread implementation of behavioral therapies, such as cognitive-behavioral therapy and parent-training


programs. In resource-limited settings, including Iran, only approximately 40–50% of eligible children receive access to these interventions, according to regional meta-analyses (2, 28), highlighting persistent equity gaps in the implementation of precision-based care.

Advancements in Neurofeedback and Integration with Biomarkers

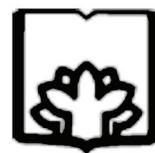
Reported neurofeedback outcomes vary considerably across studies. While broad meta-analyses generally report small effect sizes, ranging from 0.04 to 0.36, recent syntheses published in 2025 focusing on specific ADHD subtypes, particularly inattentive presentations, demonstrate moderate benefits, with standardized mean differences ranging from 0.45 to 0.65. These findings underscore the central role of clinical heterogeneity and subtype stratification in interpreting neurofeedback efficacy.

Neurofeedback protocols targeting prefrontal theta-to-beta ratios aim to enhance attentional regulation and executive functioning through EEG-guided neural modulation. According to recent syntheses, such approaches yield moderate improvements in self-regulatory capacity among inattentive subtypes, with effect sizes ranging from 0.45 to 0.65 (95% CI, 0.22 to 0.88), thereby reconciling discrepancies between subtype-specific benefits and smaller group-level effects reported in broader meta-analyses (75). These findings highlight the necessity of biomarker-stratified clinical trials.

Meta-analytic evidence further suggests utility in medication-resistant pediatric populations, where neurofeedback may enhance neural self-regulation. Genetic biomarkers improve response prediction to approximately 70% accuracy when combined with EEG-based neurofeedback, as extrapolated from prior studies (64–66), although additional validation in large-scale trials is required (35). Artificial intelligence-driven integration of multimodal data, including polygenic risk scores and theta-to-beta ratio models, has demonstrated

promising predictive accuracy ranging from 65 to 75% in pilot studies, warranting further empirical confirmation.

When employed as an adjunctive intervention, neurofeedback has been associated with reductions in stimulant dosage of approximately 20–30% among treatment responders, as reported in meta-analytic findings (61). Consequently, integrative treatment models combining pharmacogenomics, neurofeedback, and neuroimaging emerge as optimal strategies for managing ADHD heterogeneity, reducing trial-and-error prescribing by an estimated 40% (34). Such biomarker integration advances precision medicine by optimizing therapeutic outcomes while systematically addressing response variability.


Challenges in Integrating Genetic and Neurofeedback Approaches

Despite encouraging advances, several challenges impede the clinical translation of integrated genetic and neurofeedback strategies. Technical limitations, including the absence of unified multimodal platforms capable of integrating genetic and EEG data, remain a major obstacle. Inconsistent protocol standardization and limited availability of specialized expertise further restrict reproducibility and scalability. Moreover, the complexity of gene–environment and epigenetic interactions necessitate large-scale, longitudinal investigations to validate the long-term efficacy and generalizability of precision-based interventions.

Addressing these challenges requires coordinated strategic efforts, including the application of artificial intelligence and machine-learning techniques to multi-omics datasets for biomarker discovery, alongside policy initiatives aimed at reducing global disparities and ensuring equitable access to advanced diagnostic and therapeutic tools for ADHD.

Future Research Directions and Recommendations

Advancement of precision-oriented ADHD

care necessitates prioritization of the following research directions:

1. Conducting longitudinal clinical trials examining gene–neurofeedback interaction effects, such as DRD4 variants combined with theta-to-beta modulation, to refine individualized protocols and substantially reduce trial-and-error prescribing (76).
2. Standardizing neurofeedback methodologies through integrated fMRI–EEG paradigms, thereby enhancing mechanistic understanding and reducing heterogeneity across studies (74).
3. Developing cost-effective, portable neurofeedback technologies and expanding access to genetic testing, particularly in low- and middle-income countries, with the potential to significantly improve treatment accessibility for underserved pediatric populations (55).
4. Leveraging artificial intelligence and machine learning to analyze multi-omics datasets, enabling the discovery of novel biomarkers and the development of advanced predictive models, with projected accuracies reaching 80–90% in optimized frameworks, thereby transforming diagnostic and personalized management strategies (63).

Furthermore, the implementation of multidisciplinary treatment models integrating genetics, neurofeedback, and pharmacology is essential for minimizing therapeutic delays and enhancing equity in ADHD care (62). Achieving global equity will require targeted policy initiatives and increased funding to support clinical trials in low-resource settings, thereby addressing persistent disparities and reducing under-treatment across diverse populations.

Limitations of This Review

This systematic review provides a comprehensive synthesis of genetic and biomarker research in ADHD but is subject to several limitations. First, the restriction to English-language publications may introduce language bias, potentially limiting representation of relevant non-English studies. Second,

although inclusion of Google Scholar broadened literature coverage, its limited reproducibility posed methodological challenges, which were mitigated through predefined keyword constraints and rigorous duplicate removal. Third, substantial heterogeneity across studies ($I^2 > 50\%$) precluded quantitative meta-analysis, necessitating a narrative synthesis that may introduce interpretative subjectivity. Finally, risk-of-bias assessments indicated moderate overall study quality, with common limitations related to allocation concealment and long-term follow-up, underscoring the need for more rigorous future investigations.

Conclusions

The integration of biomarkers, particularly genetic and neurophysiological indicators, holds substantial promise for advancing ADHD treatment by addressing limitations inherent in current pharmacological and behavioral paradigms. While stimulant medications and cognitive-behavioral therapy remain foundational, EEG-based neurofeedback targeting dysregulated neural oscillations, such as theta-to-beta ratios, represents a promising non-invasive adjunct with small-to-moderate efficacy, albeit with ongoing debate in the literature (52, 73). Future research should focus on elucidating synergistic interactions between genetic predispositions and neurophysiological modulation, including combinations such as DRD4 variants with theta-to-beta regulation, to optimize therapeutic outcomes and reduce response variability (77). Addressing challenges related to protocol standardization, technological accessibility, and treatment heterogeneity will be critical for realizing the full potential of precision medicine, thereby enabling equitable, circuit-specific care and improving quality of life for diverse populations affected by ADHD.

Acknowledgements

We extend our sincere gratitude to the

librarians who provided invaluable assistance with database searches. We also acknowledge the constructive contributions of the anonymous peer reviewers, whose insightful comments substantially strengthened the quality and rigor of this systematic review.

Conflict of Interest

The authors declare that they have no conflicts of interest, whether financial or non-financial, that could be perceived as influencing the objectivity, integrity, or interpretation of this systematic review.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Ethical Consideration

This manuscript complies fully with the ethical guidelines established by the Committee on Publication Ethics (COPE). The authors ensured transparency in the methodological approach, accurate and faithful representation of data from the included studies, and strict avoidance of any form of research misconduct, including data fabrication, falsification, or selective reporting.

Code of Ethics

As this study constitutes a systematic review synthesizing previously published literature and does not involve direct participation of human or animal subjects, approval from an institutional review board was not required. All data were derived exclusively from publicly available sources, and the review adheres to established ethical standards for academic research, including appropriate citation practices and the avoidance of plagiarism.

Author Contributions

Ronak Mesroghli contributed to

conceptualization, methodology development, data curation, formal analysis, visualization, project administration, and drafting of the original manuscript. Seyed Mahmoud Tabatabaei contributed to methodology refinement, validation, investigation, supervision, and critical review and editing of the manuscript. Both authors reviewed, revised, and approved the final version of the manuscript prior to submission.

References

- 1 Polanczyk G, de Lima MS, Horta BL, Biederman J, Rohde LA. The worldwide prevalence of ADHD: a systematic review and metaregression analysis. *Am J Psychiatry*. 2007;164(6):942-8. doi: 10.1176/ajp.2007.164.6.942.
- 2 Hakim Shooshtari M, Shariati B, Kamalzadeh L, Naserbakht M, Tayefi B, Taban M. The prevalence of attention deficit hyperactivity disorder in Iran: An updated systematic review. *Med J Islam Repub Iran*. 2021; 35:8. doi: 10.47176/mjiri.35.8.
- 3 American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders (DSM-5). 5th ed. Washington, DC: APA; 2013.
- 4 Faraone SV, Mick E. Molecular genetics of attention deficit hyperactivity disorder. *Psychiatr Clin North Am*. 2010;33(1):159-80. doi: 10.1016/j.psc.2009.12.004. PMID: 20159345; PMCID: PMC2847260.
- 5 Thapar A, Cooper M, Eyre O, Langley K. What have we learnt about the causes of ADHD? *J Child Psychol Psychiatry*. 2013;54(1):3-16. doi: 10.1111/j.1469-7610.2012.02611.
- 6 Thapar A, Cooper M, Jefferies R, Stergiakouli E. What causes attention deficit hyperactivity disorder? *Arch Dis Child*. 2012;97(3):260-5. doi: 10.1136/archdischild-2011-300482. Epub 2011 Sep 7. PMID: 21903599; PMCID: PMC3927422.
- 7 Faraone SV, Doyle AE, Mick E, Biederman J. Meta-analysis of the association between the 7-repeat allele of the dopamine D (4) receptor gene and attention deficit hyperactivity disorder. *Am J Psychiatry*. 2001;158(7):1052-7. doi: 10.1176/appi.ajp.158.7.1052.
- 8 Gizer IR, Ficks C, Waldman ID. Candidate gene studies of ADHD: a meta-analytic review. *Hum Genet*. 2009;126(1):51-90. doi: 10.1007/s00439-009-0694-x.
- 9 Agoalikum E, Klugah-Brown B, Wu H, Hu P, Jing J & Biswal B. Structural differences among children, adolescents, and adults with attention deficit/hyperactivity disorder and abnormal Granger causality of the right pallidum and wholebrain.. *Front*

Hum Neurosci. 2023; 17:1076873. doi:10.3389/fnhum.2023.1076873.

- 10 Wilens TE, Spencer TJ. Understanding attention-deficit/hyperactivity disorder from childhood to adulthood. *Postgrad Med.* 2010;122(5):97-109. doi: 10.3810/pgm.2010.09.2206.
- 11 Biederman J, Spencer T, Wilens T. Evidence-based pharmacotherapy for attention-deficit hyperactivity disorder. *Int J Neuropsychopharmacol.* 2004;7(1):77-97. doi: 10.1017/S1461445703003973. Epub 2004 Jan 21. PMID: 14733627.
- 12 Hyman SE. The diagnosis of mental disorders: the problem of reification. *Annu Rev Clin Psychol.* 2010; 6:155-79. doi: 10.1146/annurev.clinpsy.3.022806.091532. PMID: 17716032.
- 13 Sonuga-Barke EJ, Cortese S, Fairchild G, Stringaris A. Annual research review: transdiagnostic neuroscience of ADHD: mapping the route from etiology to treatment. *J Child Psychol Psychiatry.* 2016;57(3):321-349.
- 14 Swanson JM, Kinsbourne M, Nigg J, Lanphear B, Stefanatos GA, Volkow N, et al. Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis. *Neuropsychol Rev.* 2007;17(1):39-59. doi: 10.1007/s11065-007-9019-9.
- 15 Wilens TE, Biederman J, Spencer TJ. Attention deficit/hyperactivity disorder across the lifespan. *Annu Rev Med.* 2002; 53:113-31. doi: 10.1146/annurev.med.53.082901.103945.
- 16 Adamou M, Fullen T, Jones SL. EEG for Diagnosis of Adult ADHD: A Systematic Review With Narrative Analysis. *Front Psychiatry.* 2020; 11:871. doi: 10.3389/fpsyg.2020.00871. PMID: 33192633; PMCID: PMC7477352.
- 17 Castellanos FX, Proal E. Large-scale brain systems in ADHD: beyond the prefrontal-striatal model. *Trends Cogn Sci.* 2012;16(1):17-26. doi: 10.1016/j.tics.2011.11.007.
- 18 Halperin JM, Marks DJ. Practitioner Review: Assessment and treatment of preschool children with attention-deficit/hyperactivity disorder. *J Child Psychol Psychiatry.* 2019; 60(9):930-943. doi: 10.1111/jcpp.13014.
- 19 Cortese S. Pharmacologic Treatment of Attention Deficit-Hyperactivity Disorder. *N Engl J Med.* 2020; 383(11):1050-1056. doi: 10.1056/NEJMra1917069.
- 20 Swanson J, Baler RD, Volkow ND. Understanding the effects of stimulant medications on cognition in individuals with attention-deficit hyperactivity disorder: a decade of progress. *Neuropsychopharmacology.* 2011; 36(1):207-26. doi: 10.1038/

ADHD Biomarkers: A Systematic Review for Precision Care

npp.2010.160.

- 21 Sonuga-Barke EJ, Brandeis D, Cortese S, Daley D, Ferrin M. Nonpharmacological interventions for ADHD: systematic review and meta-analyses of randomized controlled trials of dietary and psychological treatments. *Am J Psychiatry.* 2013;170(3):275-89. doi: 10.1176/appi.ajp.2012.12070991.
- 22 Jensen PS, Arnold LE, Swanson JM, Vitiello B, Abikoff HB, Greenhill LL, et al. 3-year follow-up of the NIMH MTA study. *J Am Acad Child Adolesc Psychiatry.* 2007;46(8):989-1002.
- 23 Mechler K, Banaschewski T, Hohmann S, Häge A. Evidence-based pharmacological treatment options for ADHD in children and adolescents. *Pharmacol Ther.* 2022; 230:107940. doi:10.1016/j.pharmthera.2021.107940.
- 24 Skoglund C, Brandt L, D'Onofrio B, Larsson H, Franck J. Methylphenidate doses in Attention Deficit/Hyperactivity Disorder and comorbid substance use disorders. *Eur Neuropsychopharmacol.* 2017; 27(11):1144-1152. doi: 10.1016/j.euroneuro.2017.08.435.
- 25 Cortese S, Adamo N, Del Giovane C, Mohr-Jensen C, Hayes AJ, Carucci S, et al. Comparative efficacy and tolerability of medications for attention-deficit hyperactivity disorder in children, adolescents, and adults: a systematic review and network meta-analysis. *Lancet Psychiatry.* 2018;5(9):727-738. doi: 10.1016/S2215-0366(18)30269-4.
- 26 Faraone SV, Giefer EE. Long-term effects of methylphenidate transdermal delivery system treatment of ADHD on growth. *J Am Acad Child Adolesc Psychiatry.* 2007; 46(9):1138-1147. doi: 10.1097/chi.0b013e31806ad1d7.
- 27 Connolly JJ, Glessner JT, Elia J, Hakonarson H. ADHD & Pharmacotherapy: Past, Present and Future: A Review of the Changing Landscape of Drug Therapy for Attention Deficit Hyperactivity Disorder. *Ther Innov Regul Sci.* 2015; 49(5):632-642. doi: 10.1177/2168479015599811. PMID: 26366330; PMCID: PMC4564067.
- 28 Daley D, van der Oord S, Ferrin M, Danckaerts M, Doepfner M, Cortese S, et al. European ADHD Guidelines Group. Behavioral interventions in attention-deficit/hyperactivity disorder: a meta-analysis of randomized controlled trials across multiple outcome domains. *J Am Acad Child Adolesc Psychiatry.* 2014; 53(8):835-47, 847.e1-5. doi: 10.1016/j.jaac.2014.05.013.
- 29 Thapar A, Martin J, Mick E, Arias Vásquez A, Langley K, Scherer SW, et al. Psychiatric gene discoveries shape evidence on ADHD's biology. *Mol*

Psychiatry. 2016;21(9):1202–1207. doi: 10.1038/mp.2015.163.

30 Zayats T, Neale BM. Recent advances in understanding of attention deficit hyperactivity disorder (ADHD): how genetics are shaping our conceptualization of this disorder. *F1000Res.* 2019; 8:F1000 Faculty Rev-2060. doi: 10.12688/f1000research.18959.2. PMID: 31824658; PMCID: PMC6896240.

31 Lenartowicz A, Loo SK. Use of EEG to diagnose ADHD. *Curr Psychiatry Rep.* 2014;16(11):498. doi: 10.1007/s11920-014-0498-0.

32 Rubia K, Alegria A, Brinson H. Imaging the ADHD brain: disorder-specificity, medication effects and clinical translation. *Expert Rev Neurother.* 2014;14(5):519-38. doi: 10.1586/14737175.2014.907526.

33 Köhler-Forsberg K, Jorgensen A, Dam VH, Stenbæk DS, Fisher PM, Ip CT, et al. Predicting Treatment Outcome in Major Depressive Disorder Using Serotonin 4 Receptor PET Brain Imaging, Functional MRI, Cognitive-, EEG-Based, and Peripheral Biomarkers: A NeuroPharm Open Label Clinical Trial Protocol. *Front Psychiatry.* 2020; 11:641. doi: 10.3389/fpsyg.2020.00641.

34 Buitelaar J, Bölte S, Brandeis D, Caye A, Christmann N, Cortese S, et al. Toward Precision Medicine in ADHD. *Front Behav Neurosci.* 2022; 16:900981. doi: 10.3389/fnbeh.2022.900981.

35 Zhong X, Yuan X, Dai Y, Zhang X, Jiang C. Neurofeedback training for executive function in ADHD children: a systematic review and meta-analysis. *Sci Rep.* 2025; 15(1):28148. doi: 10.1038/s41598-025-94242-4.

36 Enriquez-Geppert S, Huster RJ, Herrmann CS. EEG-Neurofeedback as a Tool to Modulate Cognition and Behavior: A Review Tutorial. *Front Hum Neurosci.* 2017; 11:51. doi: 10.3389/fnhum.2017.00051.

37 Steiner NJ, Frenette EC, Rene KM, Brennan RT, Perrin EC. In-school neurofeedback training for ADHD: sustained improvements from a randomized control trial. *Pediatrics.* 2014;133(3):483-92. doi: 10.1542/peds.2013-2059.

38 Castellanos FX, Margulies DS, Kelly C, Uddin LQ, Ghaffari M, Kirsch A, et al. Cingulate-precuneus interactions: a new locus of dysfunction in adult attention-deficit/hyperactivity disorder. *Biol Psychiatry.* 2008; 63(3):332-7. doi: 10.1016/j.biopsych.2007.06.025.

39 Fair DA, Bathula D, Nikolas MA, Nigg JT. Distinct neuropsychological subgroups in typically developing youth inform heterogeneity in children with ADHD. *Proc Natl Acad Sci U S A.* 2012 Apr 24;109(17):6769-74. doi: 10.1073/pnas.1115365109.

40 Oades RD. Dopamine-serotonin interactions in attention-deficit hyperactivity disorder (ADHD). *Prog Brain Res.* 2008; 172:543-65. doi: 10.1016/S0079-6123(08)00926-6. PMID: 18772050.

41 Joseph N, Zhang-James Y, Perl A, Faraone SV. Oxidative Stress and ADHD: A Meta-Analysis. *J Atten Disord.* 2015; 19(11):915-24. doi: 10.1177/1087054713510354.

42 Doyle AE, Willcutt EG, Seidman LJ, Biederman J, Chouinard VA, Silva J, et al. Attention-deficit/hyperactivity disorder endophenotypes. *Biol Psychiatry.* 2005;57(11):1324–1335. doi: 10.1016/j.biopsych.2005.03.015.

43 Rowe DC, Stever C, Giedinghagen LN, Gard JM, Cleveland HH, Terris ST, et al. Dopamine DRD4 receptor polymorphism and attention deficit hyperactivity disorder. *Mol Psychiatry.* 1998; 3(5):419-26. doi: 10.1038/sj.mp.4000432.

44 Demontis D, Walters GB, Athanasiadis G, Walters R, Therrien K, Nielsen TT, et al. Genome-wide analyses of ADHD identify 27 risk loci, refine the genetic architecture and implicate several cognitive domains. *Nat Genet.* 2023; 55(2):198-208. doi: 10.1038/s41588-022-01285-8.


45 Stevens SE, Kumsta R, Kreppner JM, Brookes KJ, Rutter M, Sonuga-Barke EJ. Dopamine transporter gene polymorphism moderates the effects of severe deprivation on ADHD symptoms: developmental continuities in gene-environment interplay. *Am J Med Genet B Neuropsychiatr Genet.* 2009; 150B(6):753-61. doi: 10.1002/ajmg.b.31010.


46 Kereszrturi E, Tarnok Z, Bognar E, Lakatos K, Farkas L, Gadoros J, et al. Catechol-O-methyltransferase Val158Met polymorphism is associated with methylphenidate response in ADHD children. *Am J Med Genet B Neuropsychiatr Genet.* 2008;147B(8):1431-5. doi: 10.1002/ajmg.b.30704.

47 Cheuk DK, Wong V. Meta-analysis of association between a catechol-O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder. *Behav Genet.* 2006 ;36(5):651-9. doi: 10.1007/s10519-006-9076-5.

48 Loo SK, Specter E, Smolen A, Hopfer C, Teale PD, Reite ML. Functional effects of the DAT1 polymorphism on EEG measures in ADHD. *J Am Acad Child Adolesc Psychiatry.* 2003;42(8):986-93. doi: 10.1097/01.CHI.0000046890.27264.88.

49 Krain AL, Castellanos FX. Brain development and ADHD. *Clin Psychol Rev.* 2006 Aug;26(4):433-44. doi: 10.1016/j.cpr.2006.01.005. Epub 2006 Feb 9.

PMID: 16480802.

50 McGough JJ. Attention-deficit/hyperactivity disorder pharmacogenomics. *Biol Psychiatry*. 2005; 57(11):1367-73. doi: 10.1016/j.biopsych.2004.10.021.

51 Williams C, Wright B, Partridge I. Attention deficit hyperactivity disorder--a review. *Br J Gen Pract*. 1999; 49(444):563-71.

52 Galang EV, Velásquez MA, Elcin D, O'Connell S, Wieck J, McNair S, et al. Systematic review and meta-analysis of the relationships between real-time neurofeedback training parameters and acquisition of neural modulation. *Front Hum Neurosci*. 2025; 19:1652607. doi: 10.3389/fnhum.2025.1652607.

53 Walton E, Pingault JB, Cecil CA, Gaunt TR, Relton CL, Mill J, et al. Epigenetic profiling of ADHD symptoms trajectories: a prospective, methylome-wide study. *Mol Psychiatry*. 2017;22(2):250–256. doi: 10.1038/mp.2016.85.

54 Mill J, Xu X, Ronald A, Curran S, Price T, Knight J, et al. Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25, and 5HT1B. *Am J Med Genet B Neuropsychiatr Genet*. 2005; 133B(1):68-73. doi: 10.1002/ajmg.b.30107.

55 Herrera-Morales WV, Ramírez-Lugo L, Cauich-Kumul R, Murillo-Rodríguez E, Núñez-Jaramillo L. Personalization of Pharmacological Treatments for ADHD: Why it is Advisable and Possible Options to Achieve it. *Curr Top Med Chem*. 2022; 22(15):1236-1249. doi: 10.2174/156802662266220509155413.

56 Castellanos FX, Tannock R. Neuroscience of attention-deficit/hyperactivity disorder: the search for endophenotypes. *Nat Rev Neurosci*. 2002; 3(8):617–628. doi: 10.1038/nrn896.

57 Froehlich TE, Epstein JN, Nick TG, Melguizo Castro MS, Stein MA, Brinkman WB, et al. Pharmacogenetic predictors of methylphenidate dose-response in attention-deficit/hyperactivity disorder. *J Am Acad Child Adolesc Psychiatry*. 2011;50(11):1129-1139.e2. doi: 10.1016/j.jaac.2011.08.002.

58 Talge NM, Neal C, Glover V. Early Stress, Translational Research and Prevention Science Network: Fetal and Neonatal Experience on Child and Adolescent Mental Health. Antenatal maternal stress and long-term effects on child neurodevelopment: how and why? *J Child Psychol Psychiatry*. 2007; 48(3-4):245-61. doi: 10.1111/j.1469-7610.2006.01714.x.

59 Thissen AJ, Rommelse NN, Hoekstra PJ, Hartman C, Heslenfeld D, Luman M, et al. Attention deficit hyperactivity disorder (ADHD) and executive functioning in affected and unaffected adolescents and their parents: challenging the endophenotype construct. *Psychol Med*. 2014; 44(4):881-92. doi: 10.1017/S0033291713001153.

60 Saif MGM, Sushkova L. Clinical efficacy of neurofeedback protocols in treatment of Attention Deficit/Hyperactivity Disorder (ADHD): A systematic review. *Psychiatry Res Neuroimaging*. 2023; 335:111723. doi: 10.1016/j.pscychresns.2023.111723.

61 Van Doren J, Arns M, Heinrich H, Vollebregt MA, Strehl U, K Loo S. Sustained effects of neurofeedback in ADHD: a systematic review and meta-analysis. *Eur Child Adolesc Psychiatry*. 2019; 28(3):293-305. doi: 10.1007/s00787-018-1121-4.

62 Holtmann M, Sonuga-Barke E, Cortese S, Brandeis D. Neurofeedback for ADHD: a review of current evidence. *Child Adolesc Psychiatr Clin N Am*. 2014; 23(4):789-806. doi: 10.1016/j.chc.2014.05.006.

63 Chen T, Tachmazidis I, Batsakis S, Adamou M, Papadakis E, Antoniou G. Diagnosing attention-deficit hyperactivity disorder (ADHD) using artificial intelligence: a clinical study in the UK. *Front Psychiatry*. 2023; 14:1164433. doi: 10.3389/fpsyg.2023.1164433.

64 Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA. EEG coherence and neurofeedback in ADHD. *Psychophysiology*. 2007;44(3):366-373.

65 Arns M, de Ridder S, Strehl U, Breteler M, Coenen A. Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. *Clin EEG Neurosci*. 2009; 40(3):180-9. doi: 10.1177/155005940904000311. PMID: 19715181.

66 Vernon D, Egner T, Cooper N, Compton T, Neilands C, Sheri A, et al. The effect of training distinct neurofeedback protocols on aspects of cognitive performance. *Int J Psychophysiol*. 2003; 47(1):75-85. doi: 10.1016/s0167-8760(02)00091-0.

67 Holtmann M, Pniewski B, Wachtlin D, Wörz S, Strehl U. Neurofeedback in children with attention-deficit/hyperactivity disorder (ADHD)--a controlled multicenter study of a non-pharmacological treatment approach. *BMC Pediatr*. 2014; 14:202. doi: 10.1186/1471-2431-14-202.

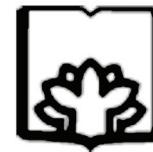
68 Monastra VJ, Lynn S, Linden M, Lubar JF, Gruzelier J, LaVaque TJ. Electroencephalographic biofeedback in the treatment of attention-deficit/hyperactivity disorder. *Appl Psychophysiol Biofeedback*. 2005; 30(2):95-114. doi: 10.1007/s10484-005-4305-x.

69 Faraone SV, Biederman J, Mick E. The age-dependent decline of attention deficit hyperactivity disorder: a meta-analysis of follow-up studies. *Psychol Med*. 2006; 36(2):159-65. doi: 10.1017/

70 Ficks CA, Waldman ID. Gene-environment interactions in attention-deficit/hyperactivity disorder. *Curr Psychiatry Rep.* 2009 ; 11(5):387-92. doi: 10.1007/s11920-009-0058-1.

71 Faraone SV, Larsson H. Genetics of attention deficit hyperactivity disorder. *Mol Psychiatry.* 2019; 24(4):562-575. doi: 10.1038/s41380-018-0070-0. Epub 2018 Jun 11.

72 Barkley RA. Attention-deficit hyperactivity disorder: A handbook for diagnosis and treatment. 4th ed. New York: The Guilford Press; 2015.


73 Cortese S, Ferrin M, Brandeis D, Holtmann M, Aggensteiner P, Daley D, et al. Neurofeedback for Attention-Deficit/Hyperactivity Disorder: Meta-Analysis of Clinical and Neuropsychological Outcomes From Randomized Controlled Trials. *J Am Acad Child Adolesc Psychiatry.* 2016; 55(6):444-55. doi: 10.1016/j.jaac.2016.03.007.

74 Ölçüoğlu R. Neurofeedback for ADHD: Exploring the Role of Quantitative EEG and Brainwave Modulation. *Brain Behav.* 2025 ; 15(8):e70714. doi: 10.1002/brb3.70714.

75 Westwood SJ, Aggensteiner PM, Kaiser A, Nagy P, Donno F, Merkl D, et al. Neurofeedback for Attention-Deficit/Hyperactivity Disorder: A Systematic Review and Meta-Analysis. *JAMA Psychiatry.* 2025; 82(2):118-129. doi: 10.1001/jamapsychiatry.2024.3702.

76 Deilami M, Jahandideh A, Kazemnejad Y, Fakour Y, Alipoor S, Rabiee F, et al. The Effect of Neurofeedback Therapy on Reducing Symptoms Associated with Attention Deficit Hyperactivity Disorder: A Case Series Study. *Basic Clin Neurosci.* 2016; 7(2):167-71. doi: 10.15412/J.BCN.03070211.

77 Enriquez-Geppert S, Smit D, Pimenta MG, Arns M. Neurofeedback as a Treatment Intervention in ADHD: Current Evidence and Practice. *Curr Psychiatry Rep.* 2019; 21(6):46. doi: 10.1007/s11920-019-1021-4.

