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Background & Objectives: Gastric cancer (GC) continues to rank among the leading 
causes of cancer-related mortality worldwide, primarily because of late-stage diagnosis, 
marked molecular heterogeneity, and the emergence of therapeutic resistance. The 
long non-coding RNA (lncRNA) H19 has been recognized as an oncogene in multiple 
malignancies; however, its precise molecular mechanisms and clinical significance in GC 
remain incompletely understood.
Materials & Methods: We conducted an integrative bioinformatics analysis of 431 
TCGA-STAD (stomach adenocarcinoma) samples, integrating somatic mutation, RNA-
seq, and clinical datasets. The study examined mutational landscapes, tumor mutational 
burden (TMB), and distinct mutational signatures. Patients were classified according 
to H19 expression levels for subsequent differential expression, correlation, pathway 
enrichment, protein–protein interaction (PPI) network construction, and survival 
analyses.
Results: The most frequent mutations were identified in TTN (51%), TP53 (46%), 
MUC16 (31%), ARID1A (27%), and LRP1B (27%). Six distinct mutational signatures 
were detected, reflecting processes associated with aging, mismatch repair deficiency, 
POLE-driven hypermutation, and prior chemotherapy exposure. Stratification based on 
H19 expression revealed 15,179 differentially expressed genes that were significantly 
enriched in pathways related to extracellular matrix organization, focal adhesion, and 
cell adhesion. H19 exhibited strong positive correlations with IGF2, TCF15, and miR-
675, suggesting a potential competing endogenous RNA (ceRNA) function, and negative 
correlations with ATP4A and ATP4B, indicating possible disruption of parietal cell 
activity. The hub genes identified within the PPI network included GAPDH, COL1A1, 
TGFB1, and SIRT1.
Conclusion: Collectively, these findings suggest that H19 acts as a pivotal regulator 
in GC by modulating ceRNA networks, promoting extracellular matrix remodeling, 
and influencing oncogenic signaling cascades. Although its independent prognostic 
significance has yet to be fully established, this comprehensive systems-level analysis 
provides valuable insights and lays the groundwork for future experimental and clinical 
studies exploring H19 as a potential diagnostic biomarker and therapeutic target.
Keywords: Gastric cancer, Long non-coding RNA H19, Bioinformatics analysis, ceRNA 
network, Tumor heterogeneity
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Introduction
Gastric cancer (GC) is one of the leading 

causes of cancer-related mortality worldwide. 
Despite advances in surgery, chemotherapy, 
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and targeted therapy, patients with advanced 
disease experience dismal outcomes due to late 
presentation, tumor heterogeneity, and drug 
resistance. The mechanism of GC pathogenesis 
is initiated by genetic mutations, epigenetic 
dysregulation, and aberrant signaling pathways, 
ultimately resulting in tumor initiation and 
growth (1). Molecularly targeted agents such 
as HER2 (human epidermal growth factor 
receptor), VEGFR (Vascular Endothelial Growth 
Factor Receptor), CLDN18.2, and FGFR2b 
inhibitors have demonstrated efficacy in specific 
patient populations, while immune checkpoint 
inhibitors targeting PD-1/PD-L1 and CTLA-4 
can induce durable responses in certain subsets 
of patients. Nevertheless, most patients do not 
achieve sustained benefit, underscoring the 
need for novel biomarkers to improve patient 
stratification and guide therapy (1).

Mutational signatures provide critical insights 
into the underlying biological processes of GC. 
These signatures reflect DNA damage and 
repair mechanisms, including mismatch repair 
deficiency, homologous recombination deficiency, 
and exposure to environmentally acquired 
carcinogens. Certain signatures are correlated 
with clinical behavior and molecular subtypes, 
thereby influencing treatment response. Tumor-
specific, immunogenic signatures particularly 
predict responses to immune checkpoint 
blockade. Consequently, mutational signature 
analysis is emerging as an increasingly important 
precision medicine tool for GC (2).

In addition to mutations, long noncoding 
RNAs (lncRNAs) play a central role in cancer 
biology. Among them, lncRNA H19 has been 
identified as a multifunctional oncogene across 
numerous cancers. H19 overexpression is 
strongly associated with advanced tumor stage, 
lymph node metastasis, distant metastasis, and 
reduced overall survival in GC (3-7). Meta-
analyses further support its prognostic value 
across cancer types, ethnic populations, and 
study designs, demonstrating its robustness as 

a biomarker (3).
Mechanistically, H19 promotes oncogenesis 

through multiple pathways. H19 functions as 
a tumor-suppressive microRNA sponge, a 
regulator of gene expression, and a binder of 
chromatin-modifying complexes (4, 8). In GC, 
H19 modulates proliferation, migration, invasion, 
and colony formation, while suppressing 
apoptosis in vitro and in vivo (5-7). It also 
enhances tumor development and metastatic 
potential in animal models (7). Oncogenic 
signaling regulates H19 expression. Specifically, 
H19 is transcriptionally controlled by c-Myc, 
thereby amplifying its tumor-promoting activity. 
Elevated H19 expression correlates once more 
with poor clinical outcomes, reaffirming its 
prognostic significance (6).

H19 is additionally involved in post-
transcriptional regulation and signaling 
pathways. It serves as a precursor for miR-675 
and modulates oncogenic signaling pathways 
such as PI3K/AKT (phosphatidylinositol 3’–
kinase/ protein kinase B), MAPK (mitogen-
activated protein kinase), and Wnt/β-catenin 
(7, 8). Bioinformatics analyses have identified 
ceRNA networks such as H19/miR-29a-3p/LOX 
and H19/miR-107/COL1A1 that are strongly 
associated with tumor aggressiveness and 
patient survival (9). These findings confirm 
that H19 regulates key transcriptional and post-
transcriptional programs in GC.

Immune mechanisms further extend its 
functional repertoire. The H19/miR-378a-5p/
SERPINH1 axis has been shown to modulate 
immune cell infiltration in GC by altering 
macrophage and T-cell function. Patients with 
high H19 or SERPINH1 expression exhibit 
poorer survival rates, indicating that H19 plays 
a pivotal role in shaping the tumor immune 
microenvironment (10).

In addition to differential expression, 
genetic polymorphisms of H19 contribute to 
susceptibility to GC. Specific SNPs (single 
nucleotide polymorphisms), including rs217727 
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and rs2839698, are associated with increased 
risk in the Chinese Han population, particularly 
within subgroups defined by age, gender, and 
lifestyle factors (11). A meta-analysis across 
multiple cancers further confirmed the association 
of certain H19 variants, predominantly in 
gastrointestinal cancers and Asian populations, 
highlighting ethnic- and tumor type-specific 
genetic predictors (12). These findings support 
the utility of H19 polymorphisms as potential 
genetic markers for risk assessment.

Due to its stability and detectability in body 
fluids, H19 also represents a promising non-
invasive diagnostic marker. ROC curve analysis 
has demonstrated its ability to distinguish GC 
patients from healthy controls (5). Clinically, 
H19 consistently predicts poor prognosis 
and malignant disease progression, further 
solidifying its role as a diagnostic and predictive 
biomarker (3-7, 13). Therapeutic strategies 
aimed at silencing H19 expression have shown 
preclinical efficacy, positioning it as a potential 
therapeutic target (4, 7, 13).

Collectively, these data position H19 as a 
central oncogenic driver in GC, influencing 
tumorigenesis through genetic, transcriptional, 
post-transcriptional, and immunological 
mechanisms. Despite substantial evidence, the 
molecular programs regulating H19 expression 
and their intersection with the mutational 
landscape remain incompletely understood.

To address this knowledge gap, the present 
study integrates mutational, transcriptomic, and 
clinical data from The Cancer Genome Atlas 
(TCGA) stomach adenocarcinoma cohort. 
By combining mutational signature analysis, 
differential expression profiling, ceRNA 
network construction, and survival analysis, we 
aim to provide a systems-level understanding 
of H19 in GC. This comprehensive approach 
will clarify its biological roles and clinical 
significance, thereby enhancing its potential as 
a biomarker and therapeutic target in precision 
oncology.

Materials and Methods
Preprocessing and Data Acquisition

Somatic mutation, RNA-seq, and miRNA 
expression data of STAD were downloaded 
from The Cancer Genome Atlas (TCGA) using 
the TCGAbiolinks package. Mutation data in 
MAF format were filtered to retain only non-
silent variants. For transcriptome profiling, 
raw counts of lncRNAs and miRNAs aligned 
using STAR were retrieved. Low-abundance 
transcripts (lncRNAs <1×10^6, miRNAs 
<1×10^5) were excluded, and gene expression 
data were normalized using DESeq2 variance-
stabilizing transformation (VST) or log2 (TPM 
+ 1) to ensure comparability across samples. 
Clinical annotations, including sex, age, stage, 
grade, and survival status, were obtained from 
TCGA and harmonized for consistency.
Mutation Landscape and Tumor Mutational 
Burden

The mutation landscape of TCGA-STAD 
was characterized using maftools. Recurrently 
mutated genes were identified and visualized via 
oncoplots and mutation summary dashboards. 
Tumor mutational burden (TMB) was estimated 
by dividing the number of somatic coding 
mutations by the estimated exome size in 
megabases (Mb). Mutational signature analysis 
was performed using NMF on the trinucleotide 
mutation matrix, enabling the derivation of six de 
novo mutational processes. The signatures were 
then cross-referenced with COSMIC reference 
signatures to infer underlying mutagenic 
mechanisms, including mismatch repair 
deficiency, POLE mutations, and chemotherapy-
induced signatures.
Transcriptome-Wide Analyses

Differential gene expression analysis was 
conducted on RNA-seq data using DESeq2. 
Patients were stratified into high- and low-H19 
expression groups based on the median H19 
expression across tumor samples. This median-
based stratification ensures balanced group sizes 
and allows assessment of relative differences 
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within tumors rather than comparisons between 
tumor and normal tissues. Notably, negative log2 
fold-change values reflect relative expression 
differences between high- and low-H19 
subgroups within tumors without contradicting 
the documented overexpression of H19 in cancer. 
Genes with an adjusted p-value <0.05 were 
considered statistically significant. Top-ranked 
gene heatmaps were visualized using pheatmap. 
Positively and negatively co-expressed genes of 
H19 were identified through correlation analyses 
employing Spearman’s method.

To evaluate biological relevance, highly 
differentially expressed genes were subjected 
to enrichment analysis using clusterProfiler. 
Gene Ontology biological processes and 
Kyoto Encyclopedia of Genes and Genomes 
pathways were assessed with mapped org.
Hs.eg.db annotations (14, 15). Furthermore, 
co-expression of H19 with candidate miRNAs 
(e.g., hsa-miR-675, hsa-miR-21, hsa-miR-200a) 
was determined based on correlation statistics. 
miRNA–lncRNA interactions were visualized 
using ggplot2 barplots.
Multivariate Analysis of H19 and Clinical 
Outcomes

Clinical and transcriptomic data from 360 
GC patients were analyzed to investigate the 
association of H19 expression with cancer 
progression and mortality. Tumor grade and 
stage were dichotomized (Stage I–II versus III–
IV; Grade G1–G2 versus G3) after standardizing 
H19 expression as z-scores. Covariates included 
age and sex. Multivariable logistic regression 
was applied to assess associations with stage 
and grade, while multivariable Cox proportional 
hazards models evaluated associations with 
mortality. Multicollinearity and proportional 
hazards assumptions were tested to validate 
model integrity.
Network and Survival Analyses

PPI networks were constructed for 
differentially expressed genes using the 
STRINGdb interface. Networks were 

subsequently converted to graph objects using 
igraph to facilitate hub gene identification based 
on degree centrality.

Survival analysis was performed by 
integrating H19 expression with TCGA 
clinical data. Patients were stratified into high- 
and low-H19 groups using a median split. 
Kaplan–Meier survival plots were generated 
with survminer, and statistical significance 
was assessed via log-rank tests. Univariate 
and multivariate Cox proportional hazards 
regression models (via the survival package) 
were employed to examine the prognostic impact 
of H19 expression while adjusting for clinical 
covariates, including age, sex, and tumor stage, 
as appropriate. All analyses were conducted in 
R (version 4.5.1) (Table 1).

Results
Mutation Landscape of TCGA-STAD Cohort

To characterize the genomic landscape of 
STAD, we analyzed somatic mutations in 431 
TCGA-STAD samples. Across all samples, 
137,650 non-silent mutations were identified, 
with missense mutations representing the most 
prevalent class. Although less frequent than 
missense mutations, insertion/deletion events, 
nonsense mutations, and splice-site mutations 
also contributed substantially to the overall 
mutational spectrum. Among SNPs, C>T 
transitions were the most common, consistent 
with previous reports attributing these 
substitutions to spontaneous 5-methylcytosine 
deamination and mismatch repair deficiency, 
which are dominant mutational pathways in GC 
(Figure 1).

Out of 431 samples, 392 (90.95%) harbored 
at least one non-silent mutation. The most 
frequently recurrently mutated genes included 
TTN (51.2%), TP53 (45.6%), MUC16 (31.0%), 
ARID1A (26.9%), and LRP1B (26.6%). 
Additional genes, including CSMD3, SYNE1, 
FAT4, FLG, and PCLO, exhibited mutation 
frequencies ranging from 19% to 24%.  
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Table 1. R/Bioconductor packages and their utilization in TCGA-STAD mutation and transcriptome dataset analysis.
Package Ver. Purpose in the Study Ref.

TCGAbiolinks 2.36.0 Data acquisition from TCGA (mutations, RNA-seq, clinical) (16)
maftools 2.24.0 Mutation visualization, mutational signatures, TMB (17)

GenomicRanges 1.60.0 Handling genomic intervals (18)
biomaRt 2.64.0 Gene annotation, ID mapping, sequence retrieval (19)
DESeq2 1.48.0 Differential expression analysis (20)

clusterProfiler 4.16.0 GO and KEGG enrichment analysis (21)
org.Hs.eg.db 3.21.0 Gene annotation database for Homo sapiens (22)

pheatmap 1.0.13 Heatmap visualization of gene expression data (23)
ggplot2 3.5.2 Data visualization (barplots, correlation plots) (24)
survival 3.8-3 Cox proportional hazards modeling (25)

survminer 0.5.0 Kaplan–Meier survival curve visualization (26)
STRINGdb 2.20.0 Protein–protein interaction network construction (27)

igraph 2.1.4 Network analysis and visualization (28)

Figure 1. Landscape of somatic mutations in the TCGA-STAD cohort. Panels display (top left) distribution of variant 
classifications, (top center) variant types, and (top right) single nucleotide variant (SNV) classes. The bottom panel shows 
variants per sample, a summary of classification totals, and the 10 most frequently recurrently mutated genes (TTN, TP53, 

MUC16, LRP1B, ARID1A, SYNE1, FAT4, CSMD3, PCLO, and FLG) with mutation rates from 20% to 51%.
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Other recurrently affected genes included 
HMCN1, ACVR2A, ZFHX4, DNAH5, OBSCN, 
and RYR2 (15–18%). These data highlight the 
importance of recurrent mutations in structural 
and chromatin-modifying genes in STAD 
pathogenesis (Figure 2). 

Tumor mutational burden (TMB) analysis 
revealed marked heterogeneity. The mean 
TMB was 6.39 mutations per megabase (Mb), 
ranging from 0.02 to 117. The median TMB 
was 1.94, with approximately 10% of samples 
(44 cases) classified as high TMB, which may 
have implications for immunotherapy response. 
The distribution of TMB indicated that most 
tumors fell within the low- to moderate-TMB 
category, with only a small fraction exhibiting 
hypermutated profiles (Figure 3).

Mutational signature analysis identified six 
processes contributing to the STAD mutational 
landscape. Signature 1 resembled SBS1, reflecting 
age-related mutagenesis due to 5-methylcytosine 
deamination. Signature 2 resembled SBS40a, of 
unknown etiology, while Signature 3 resembled 
SBS21, associated with mismatch repair 
deficiency. Signatures 4 and 5 corresponded to 
SBS10b (linked to POLE mutations) and SBS15 
(another signature indicative of mismatch 

repair deficiency), respectively. Finally, 
Signature 6 resembled SBS17b, associated with 
reactive oxygen species and exposure to 5-FU 
chemotherapy. Collectively, these findings 
underscore the roles of aging, DNA repair 
deficiency, and chemotherapy-induced stress in 
the mutational biology of GC (Figure 4).
Clinical Features and Expression Data

RNA-seq expression data were available 
for 448 samples, including 412 primary 
tumors and 36 solid tissue normal samples.  

Figure 2. Oncoplot of the mutational profile of TCGA-STAD. There were 392 of 431 samples (90.95%) with at least one 
non-silent mutation. The most commonly mutated genes were TTN (51%), TP53 (46%), MUC16 (31%), ARID1A (27%), 
and LRP1B (27%). Mutation types are colored according to their categories (missense, frameshift insertions/deletions, 
splice-site, in-frame deletions, and multi-hit events), demarcating heterogeneity in mutational profile between patients.

Figure 3. Tumor mutational burden (TMB) across TCGA-
STAD samples. Each dot represents a tumor sample, with 
mutation rates in units of mutations per megabase (Mb) 
on a log10 axis. The median TMB was 1.94 mutations/
Mb (dashed red line), with between-patient heterogeneity, 

a subgroup with hypermutated profiles.

 [
 D

O
I:

 1
0.

18
50

2/
ja

bs
.v

15
i4

.1
97

38
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ja
bs

.f
um

s.
ac

.ir
 o

n 
20

25
-1

1-
02

 ]
 

                             6 / 15

http://dx.doi.org/10.18502/jabs.v15i4.19738
https://jabs.fums.ac.ir/article-1-3180-en.html


387

Mohammadi K, et al H19 Regulatory Networks in Gastric Cancer 

After quality control and preprocessing, 
60,659 genes were retained for analysis. The 
patient cohort comprised 290 males (64.7%) 
and 158 females (35.3%), with a median age at 
diagnosis of 66.3 years. Survival follow-up data 
revealed that 274 patients (61.2%) were alive at 
last follow-up, whereas 174 (38.8%) had died. 
Tumors were frequently diagnosed at advanced 
stages, particularly IIB, IIIA, IIIB, and IV, and 

tumor grading was predominantly moderately 
and poorly differentiated (G2 and G3), with a 
minority of well-differentiated (G1) tumors. 
None of the RNA-seq subset harbored mutations 
in canonical driver genes such as TP53, PIK3CA, 
KRAS, ARID1A, or RHOA. Given that RNA-
seq is less sensitive for variant calling than DNA-
based approaches, this absence likely reflects 
dataset characteristics rather than true mutation 

Figure 4. Mutational signature analysis of TCGA-STAD identified six processes, which are largely associated with 
age, DNA repair deficiency, POLE mutation, and chemotherapy-induced damage.
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status, suggesting that expression variation was 
the dominant feature observed in this cohort.
H19-Associated Transcriptomic 
Reprogramming

To evaluate expression changes, patients were 
stratified into high- and low-H19 expression 
groups. DESeq2 differential analysis identified 
15,179 significantly altered genes (adjusted p 
< 0.05), including 7,471 upregulated and 7,708 
downregulated genes in the high-expression 
group compared to the low-expression group. 
Notably, H19 exhibited overall higher expression 
in GC relative to normal tissues, consistent with 
prior reports. However, when tumor samples 
were stratified into high- and low-expression 
groups based on the median, DESeq2 modeling 
revealed a relative decrease in H19 levels within 
the high-expression subgroup. This does not 
contradict the tumor-overexpression of H19; 
rather, it reflects differences that emerge when 
comparing subgroups within tumors rather than 
tumors versus normal tissue. In contrast, genes 
such as ATP4A, ATP4B, and keratins such 
as KRT4 were markedly upregulated. These 
observations illustrate the complexity of H19-
associated transcriptional reprogramming in 
GC, suggesting that its regulatory impact may 
be heterogeneous across patient subgroups rather 
than uniform.

Correlation analysis revealed strong positive 
correlations between H19 and genes including 
IGF2, TCF15, MFAP2, and C11orf95, suggesting 
potential co-regulatory interactions. Genes such 
as AKR1B10, CYSTM1, CYP2C18, and CA2 
were negatively correlated, indicating opposing 

regulatory pathways. Spearman correlation 
coefficients ranging from +0.53 to –0.45 
demonstrated robust gene-level correlations with 
H19 expression (Table 2, Figure 5).
Pathway Enrichment

Gene Ontology (GO) enrichment analysis of 
differentially expressed genes identified 1,030 
significantly enriched biological processes. Key 
terms included extracellular matrix organization, 
extracellular structure organization, cell-cell 
adhesion, and cell-substrate adhesion, indicating 
that H19-driven gene expression changes 
profoundly influence the tumor microenvironment 
and tissue architecture (Figure 6A).

KEGG pathway analysis revealed 133 
significantly enriched pathways. Among the 
most significant were cytoskeletal regulation in 
muscle cells, ECM (enrichment of extracellular 
matrix)-receptor interaction, protein digestion 
and absorption, focal adhesion, and cell adhesion 
molecules. These findings suggest novel 
roles in structural remodeling, intercellular 
communication, and signal transduction in H19-
mediated GC biology (Table 3, Figure 6B).
Association of H19 Expression with Clinical 
Parameters and Survival

Multivariate analyses revealed that H19 
expression was not significantly associated 
with tumor grade or stage. Cox regression 
analysis indicated that H19 expression did 
not independently predict overall survival. In 
contrast, advanced patient age, higher tumor 
stage (III–IV), and higher tumor grade (G3) 
were strongly associated with poor prognosis, 
whereas sex showed no significant effect.  

Table 2. Extremely significantly differentially expressed genes chosen between high and low H19 expression groups 
in TCGA-STAD, with log2 fold change, statistical significance, and expression direction.

Gene log2FC p-value adj p-value Direction
H19 -4.89 2.37E-216 1.19E-211 Down
IGF2 -4.20 1.97E-109 4.95E-105 Down

ATP4A 5.73 2.02E-67 3.38E-63 Up
KRT4 6.08 9.75E-62 1.22E-57 Up

ATP4B 5.27 2.61E-60 2.62E-56 Up
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The proportional hazards assumption was 
satisfied, confirming the validity of the Cox 
regression results (Table 4).
Integration of H19 with miRNA Networks 
and Clinical Outcome

Given its potential regulatory interactions 

with microRNAs, we examined correlations 
with candidate miRNA partners. H19 
displayed the strongest positive correlation 
with hsa-miR-675 (ρ = 0.64, p < 0.001), 
followed by hsa-miR-21 and hsa-miR-216a.  
Conversely, it was negatively correlated with 

Figure 5. Heatmap visualization of H19-associated expression patterns in TCGA-STAD. (A) Genes that are differentially 
expressed between the high and low H19 expression categories, with evident patient clustering by H19 expression status. 
(B) Highest positive and negative correlated genes with H19, illustrating strong co-expression (e.g., IGF2, TCF15) and 
inverse correlations (e.g., ATP4A, ATP4B, KRT4). Gradients of color represent scaled expression values (row Z-scores).
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hsa-miR-153 and hsa-miR-200a, suggesting that 
H19 may function within a ceRNA network that 
either promotes or represses the expression of 
specific miRNAs (Figure 7A).

Candidate miRNA expression across 
245 samples was highly heterogeneous. For 
instance, hsa-miR-675 expression ranged from 
0 to 14,326, with a median of 34, whereas hsa-
miR-21 expression was substantially higher 
(median 777,220). These extensive expression 
ranges underscore the heterogeneity of miRNA 

regulation among patients.
Survival analysis of 390 patients stratified by 

H19 expression revealed a trend toward differential 
outcomes, although it did not reach statistical 
significance (log-rank p = 0.061). Univariate Cox 
regression further confirmed that H19 expression 
was not an independent predictor of overall 
survival (HR = 1.03, 95% CI: 0.89–1.19, p = 0.713). 
Thus, although H19 participates in transcriptional 
and post-transcriptional networks, its prognostic 
relevance remains uncertain (Figure 7B).

Figure 6. GO (A) and KEGG (B) enrichment analyses of H19-associated genes indicate pathways for extracellular 
matrix organization, cell adhesion, and structural remodeling in TCGA-STAD.

Table 3. Top enriched Gene Ontology biological processes and KEGG pathways of H19 expression in TCGA-STAD, 
listing the number of DEGs and adjusted p-values

Pathway DEGs Adjusted p-value
Extracellular matrix organization 242 0

Cell-cell adhesion 187 0
ECM-receptor interaction 66 0

Focal adhesion 126 0
Cell adhesion molecules 111 0

Table 4. Multivariable regression analysis of H19 expression and clinical outcomes.
Outcome Predictor OR / HR 95% CI p-value

Stage (III–IV vs I–II) H19_z 0.998 0.726–1.265 0.989
Grade (G3 vs G1–G2) H19_z 0.903 0.728–1.108 0.326

Overall Survival H19_z 1.037 0.896–1.201 0.623
Overall Survival Stage III–IV 2.193 1.513–3.180 <0.001
Overall Survival Grade G3 1.517 1.066–2.158 0.021
Overall Survival Age 1.000 1.000–1.000 <0.001
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Finally, PPI analysis of differentially 
expressed mRNAs predicted a complex network 
comprising 2,184 nodes and 9,461 edges. The 
hub genes included GAPDH, COL1A1, CCL2, 
SIRT1, and TGFB1, which serve as central 
regulators of metabolism, extracellular matrix 
signaling, immune modulation, and cell cycle 
control. These findings suggest that H19-
dependent transcriptional programs extend 
beyond individual targets to encompass global 
regulatory networks in GC (Figure 7C).

Discussion 
This study comprehensively characterized 

lncRNA H19 in GC using TCGA-STAD 

data, revealing recurrent mutations in TTN, 
TP53, MUC16, ARID1A, and LRP1B, as well 
as six mutational processes associated with 
aging, mismatch repair deficiency, POLE 
hypermutation, and chemotherapy-induced 
lesions. Stratification by H19 expression identified 
over 15,000 differentially expressed genes 
enriched in extracellular matrix organization, 
focal adhesion, and cell adhesion pathways. 
Co-expression analysis demonstrated positive 
correlations with IGF2 and TCF15 and inverse 
correlations with ATP4A, ATP4B, and KRT4, 
while strong correlation with miR-675 further 
supported H19 as a ceRNA hub. Although its 
pronounced influence on transcriptional networks 

Figure 7. Molecular characteristics of H19 in TCGA-STAD. (A) Correlation analysis with high positive correlation with 
hsa-miR-675 and correlations with hsa-miR-153 and hsa-miR-200a. (B) Kaplan–Meier survival plots for comparison of 
high vs. low H19 expression groups, no significant difference observed (p = 0.061). (C) PPI network with hub genes (e.g., 

GAPDH, COL1A1, SIRT1, TGFB1) as representative of the central regulatory pathways.
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rendered it an unlikely independent prognostic 
factor in GC, these findings underscore its 
context-dependent functional role.

These results both corroborate and extend 
previous findings. The high mutation frequency 
of TP53, TTN, and MUC16 aligns with prior 
genomic studies. The frequent mutations of 
TTN, MUC16, and LRP1B were confirmed by 
Zhou et al. (2023) in TCGA-STAD (29), while 
TP53 mutations are established drivers of GC 
(30). TTN mutations have been linked to elevated 
tumor mutational burden (TMB) and enhanced 
immunotherapy response (Jia et al., 2019) 
(31), consistent with our observations. MUC16 
mutations, observed in nearly one-third of tumors, 
have been associated with high TMB, improved 
prognosis, and increased immune infiltration 
(32). LRP1B mutations, in contrast, exhibit 
context-dependent prognostic effects: although 
linked to poor survival in GC with enteroblastic 
differentiation (33), our larger cohort suggests 
nuanced, subtype-specific outcomes.

Mutational signature analysis provides 
mechanistic insight into GC. SBS1, reflecting 
spontaneous 5-methylcytosine deamination, 
emerged as a dominant process, consistent 
with Silveira et al. (2024), who identified it 
as a principal mutational force in cancers 
(34). Signatures indicative of mismatch repair 
deficiency corroborate Meier et al. (2018), 
who demonstrated a direct link between 
MMR loss and hypermutation (35). POLE 
mutations, although rare, align with prior reports 
associating them with ultrahigh TMB, elevated 
immune infiltration, and favorable prognosis 
(36). Collectively, these consistencies validate 
both our mutational analysis and the utility of 
mutational signatures as mechanistic biomarkers.

Our transcriptomic findings are concordant 
with previously reported patterns in GC. ECM 
remodeling and adhesion pathways reflects earlier 
bioinformatic studies highlighting COL1A1, 
COL1A2, and COL3A1 as central regulators of 
ECM organization (37). Disruption of ECM–

receptor interactions has been shown to promote 
invasion and metastasis (38), while Zhang et al. 
(2022) demonstrated that CPNE8 facilitates 
metastasis via focal adhesion signaling (39). Our 
results support these observations and suggest 
that H19 may contribute to GC progression by 
modulating ECM remodeling and adhesion 
dynamics.

Although H19 is actively involved in 
transcriptional and post-transcriptional 
regulatory circuits, its expression alone does not 
serve as an independent prognostic indicator in 
GC. Conventional clinical parameters, including 
age, tumor grade, and stage, remain more 
predictive of patient outcomes. Despite previous 
studies, such as Peng et al. (2017), linking 
high H19 expression to poorer survival across 
multiple cancer types (40), our analysis did not 
validate H19 as a standalone prognostic factor 
in GC. This apparent discrepancy may reflect 
tumor heterogeneity, subtype-specific effects, 
cohort composition, or treatment variability, 
suggesting that H19’s prognostic relevance is 
context-dependent and may be better interpreted 
in combination with other markers or molecular 
subgroups.

The co-expression of H19 with IGF2 is 
consistent with evidence that loss of imprinting 
at the Igf2/H19 locus drives proliferative 
signaling (41). The positive correlation with 
miR-675 aligns with studies in breast and GC 
demonstrating H19’s role as a miR-675 precursor, 
promoting proliferation and invasion (42). 
Conversely, the inverse correlation with ATP4A/
ATP4B represents a novel finding, consistent 
with Chen et al. (2022), who identified ATP4A 
downregulation as a potential GC diagnostic 
biomarker (43). These data suggest that H19 may 
contribute to malignant transformation through 
suppression of parietal cell-associated genes.

The principal strengths of this study include 
its integrative approach, combining genomic, 
transcriptomic, and clinical analyses. The large 
sample size, rigorous statistical methodology, 
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and network and enrichment analyses enhance 
reliability and illuminate the global regulatory 
influence of H19. Importantly, the study 
situates H19 within the context of mutational 
signatures and immune modulation, illustrating 
its multifunctional role in GC biology.

Nonetheless, limitations should be 
acknowledged. The retrospective nature of 
TCGA data limits clinical interpretability 
due to incomplete information on therapy 
or comorbidities. The findings are largely 
correlative, without experimental validation to 
establish causality. Survival analyses may be 
influenced by unmeasured confounders, and the 
absence of independent cohort validation restricts 
generalizability. Functional studies are required 
to confirm the described regulatory interactions, 
particularly the antagonism between H19 and 
ATP4A/ATP4B.

Collectively, these results highlight potential 
regulatory roles for H19 in GC and generate 
hypotheses regarding its involvement in invasion, 
immune modulation, and chemoresistance. 
However, the retrospective design, lack of 
detailed clinical data, and correlative approach 
preclude definitive conclusions.

Future research should focus on experimental 
validation of H19-associated pathways, 
particularly its interactions with ATP4A/ATP4B 
and ECM-related genes. Clinical investigations 
should assess whether H19 serves as a marker 
of immunotherapy responsiveness, based on its 
associations with TMB and ceRNA networks. 
Therapeutic targeting of H19, including 
disruption of its ceRNA interactions with miR-
675 and miR-21, may offer strategies to overcome 
chemoresistance (44). Finally, integration of 
H19 expression into biomarker panels such 
as MSI, PD-L1, and EBV status (45) could 
enhance patient stratification and refine precision 
oncology approaches in GC.

Conclusion
This study provides hypothesis-generating 

insights into the role of H19 within the 
genomic and transcriptomic landscape of 
GC. While it highlights potential functions 
in microenvironment modulation and 
transcriptional reprogramming, definitive 
prognostic or therapeutic implications cannot be 
established. Prospective studies and functional 
validation are required to confirm these 
observations and determine their clinical utility.
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