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Background & Objectives: Gastric cancer (GC) continues to rank among the leading
causes of cancer-related mortality worldwide, primarily because of late-stage diagnosis,
marked molecular heterogeneity, and the emergence of therapeutic resistance. The
long non-coding RNA (IncRNA) H/9 has been recognized as an oncogene in multiple
Article history: malignancies; however, its precise molecular mechanisms and clinical significance in GC
Received remain incompletely understood.
06 Sep 2025 Materials & Methods: We conducted an integrative bioinformatics analysis of 431
. . . TCGA-STAD (stomach adenocarcinoma) samples, integrating somatic mutation, RNA-
Received in revised form . . . .
seq, and clinical datasets. The study examined mutational landscapes, tumor mutational
30 Sep 2025 burden (TMB), and distinct mutational signatures. Patients were classified according
Accepted to H19 expression levels for subsequent differential expression, correlation, pathway
06 Oct 2025 enrichment, protein—protein interaction (PPI) network construction, and survival
Published online analyses.
10 Oct 2025 Results: The most frequent mutations were identified in 77N (51%), TP53 (46%),
MUCI6 (31%), ARIDIA (27%), and LRPIB (27%). Six distinct mutational signatures
were detected, reflecting processes associated with aging, mismatch repair deficiency,
POLE-driven hypermutation, and prior chemotherapy exposure. Stratification based on
HI19 expression revealed 15,179 differentially expressed genes that were significantly
enriched in pathways related to extracellular matrix organization, focal adhesion, and
cell adhesion. H79 exhibited strong positive correlations with /GF2, TCF15, and miR-
675, suggesting a potential competing endogenous RNA (ceRNA) function, and negative
correlations with 47P44 and ATP4B, indicating possible disruption of parietal cell
activity. The hub genes identified within the PPI network included GAPDH, COLIAl,
TGFBI, and SIRTI.
Conclusion: Collectively, these findings suggest that H/9 acts as a pivotal regulator
in GC by modulating ceRNA networks, promoting extracellular matrix remodeling,
and influencing oncogenic signaling cascades. Although its independent prognostic
significance has yet to be fully established, this comprehensive systems-level analysis
. provides valuable insights and lays the groundwork for future experimental and clinical
Publisher studies exploring H19 as a potential diagnostic biomarker and therapeutic target.
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and targeted therapy, patients with advanced
disease experience dismal outcomes due to late
presentation, tumor heterogeneity, and drug
resistance. The mechanism of GC pathogenesis
is initiated by genetic mutations, epigenetic
dysregulation, and aberrant signaling pathways,
ultimately resulting in tumor initiation and
growth (1). Molecularly targeted agents such
as HER2 (human epidermal growth factor
receptor), VEGFR (Vascular Endothelial Growth
Factor Receptor), CLDNI18.2, and FGFR2b
inhibitors have demonstrated efficacy in specific
patient populations, while immune checkpoint
inhibitors targeting PD-1/PD-L1 and CTLA-4
can induce durable responses in certain subsets
of patients. Nevertheless, most patients do not
achieve sustained benefit, underscoring the
need for novel biomarkers to improve patient
stratification and guide therapy (1).

Mutational signatures provide critical insights
into the underlying biological processes of GC.
These signatures reflect DNA damage and
repair mechanisms, including mismatch repair
deficiency, homologous recombination deficiency,
and exposure to environmentally acquired
carcinogens. Certain signatures are correlated
with clinical behavior and molecular subtypes,
thereby influencing treatment response. Tumor-
specific, immunogenic signatures particularly
predict responses to immune checkpoint
blockade. Consequently, mutational signature
analysis is emerging as an increasingly important
precision medicine tool for GC (2).

In addition to mutations, long noncoding
RNAs (IncRNAs) play a central role in cancer
biology. Among them, IncRNA H19 has been
identified as a multifunctional oncogene across
numerous cancers. H19 overexpression is
strongly associated with advanced tumor stage,
lymph node metastasis, distant metastasis, and
reduced overall survival in GC (3-7). Meta-
analyses further support its prognostic value
across cancer types, ethnic populations, and
study designs, demonstrating its robustness as
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a biomarker (3).

Mechanistically, H19 promotes oncogenesis
through multiple pathways. H19 functions as
a tumor-suppressive microRNA sponge, a
regulator of gene expression, and a binder of
chromatin-modifying complexes (4, 8). In GC,
H19 modulates proliferation, migration, invasion,
and colony formation, while suppressing
apoptosis in vitro and in vivo (5-7). It also
enhances tumor development and metastatic
potential in animal models (7). Oncogenic
signaling regulates H19 expression. Specifically,
H19 is transcriptionally controlled by c-Myc,
thereby amplifying its tumor-promoting activity.
Elevated H19 expression correlates once more
with poor clinical outcomes, reaffirming its
prognostic significance (6).

H19 is additionally involved in post-
transcriptional regulation and signaling
pathways. It serves as a precursor for miR-675
and modulates oncogenic signaling pathways
such as PI3K/AKT (phosphatidylinositol 3’—
kinase/ protein kinase B), MAPK (mitogen-
activated protein kinase), and Wnt/pB-catenin
(7, 8). Bioinformatics analyses have identified
ceRNA networks such as H19/miR-29a-3p/LOX
and H19/miR-107/COLIA1 that are strongly
associated with tumor aggressiveness and
patient survival (9). These findings confirm
that H19 regulates key transcriptional and post-
transcriptional programs in GC.

Immune mechanisms further extend its
functional repertoire. The H19/miR-378a-5p/
SERPINHI axis has been shown to modulate
immune cell infiltration in GC by altering
macrophage and T-cell function. Patients with
high H19 or SERPINHI expression exhibit
poorer survival rates, indicating that H19 plays
a pivotal role in shaping the tumor immune
microenvironment (10).

In addition to differential expression,
genetic polymorphisms of H19 contribute to
susceptibility to GC. Specific SNPs (single
nucleotide polymorphisms), including rs217727
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and 152839698, are associated with increased
risk in the Chinese Han population, particularly
within subgroups defined by age, gender, and
lifestyle factors (11). A meta-analysis across
multiple cancers further confirmed the association
of certain H19 variants, predominantly in
gastrointestinal cancers and Asian populations,
highlighting ethnic- and tumor type-specific
genetic predictors (12). These findings support
the utility of HI19 polymorphisms as potential
genetic markers for risk assessment.

Due to its stability and detectability in body
fluids, H19 also represents a promising non-
invasive diagnostic marker. ROC curve analysis
has demonstrated its ability to distinguish GC
patients from healthy controls (5). Clinically,
H19 consistently predicts poor prognosis
and malignant disease progression, further
solidifying its role as a diagnostic and predictive
biomarker (3-7, 13). Therapeutic strategies
aimed at silencing H19 expression have shown
preclinical efficacy, positioning it as a potential
therapeutic target (4, 7, 13).

Collectively, these data position H19 as a
central oncogenic driver in GC, influencing
tumorigenesis through genetic, transcriptional,
post-transcriptional, and immunological
mechanisms. Despite substantial evidence, the
molecular programs regulating H19 expression
and their intersection with the mutational
landscape remain incompletely understood.

To address this knowledge gap, the present
study integrates mutational, transcriptomic, and
clinical data from The Cancer Genome Atlas
(TCGA) stomach adenocarcinoma cohort.
By combining mutational signature analysis,
differential expression profiling, ceRNA
network construction, and survival analysis, we
aim to provide a systems-level understanding
of H19 in GC. This comprehensive approach
will clarify its biological roles and clinical
significance, thereby enhancing its potential as
a biomarker and therapeutic target in precision
oncology.
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Materials and Methods
Preprocessing and Data Acquisition

Somatic mutation, RNA-seq, and miRNA
expression data of STAD were downloaded
from The Cancer Genome Atlas (TCGA) using
the TCGAbiolinks package. Mutation data in
MAF format were filtered to retain only non-
silent variants. For transcriptome profiling,
raw counts of IncRNAs and miRNAs aligned
using STAR were retrieved. Low-abundance
transcripts (IncRNAs <1x10"6, miRNAs
<Ix10"5) were excluded, and gene expression
data were normalized using DESeq2 variance-
stabilizing transformation (VST) or log2 (TPM
+ 1) to ensure comparability across samples.
Clinical annotations, including sex, age, stage,
grade, and survival status, were obtained from
TCGA and harmonized for consistency.
Mutation Landscape and Tumor Mutational
Burden

The mutation landscape of TCGA-STAD
was characterized using maftools. Recurrently
mutated genes were identified and visualized via
oncoplots and mutation summary dashboards.
Tumor mutational burden (TMB) was estimated
by dividing the number of somatic coding
mutations by the estimated exome size in
megabases (Mb). Mutational signature analysis
was performed using NMF on the trinucleotide
mutation matrix, enabling the derivation of six de
novo mutational processes. The signatures were
then cross-referenced with COSMIC reference
signatures to infer underlying mutagenic
mechanisms, including mismatch repair
deficiency, POLE mutations, and chemotherapy-
induced signatures.
Transcriptome-Wide Analyses

Differential gene expression analysis was
conducted on RNA-seq data using DESeq?2.
Patients were stratified into high- and low-H19
expression groups based on the median H19
expression across tumor samples. This median-
based stratification ensures balanced group sizes
and allows assessment of relative differences
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within tumors rather than comparisons between
tumor and normal tissues. Notably, negative log2
fold-change values reflect relative expression
differences between high- and low-H19
subgroups within tumors without contradicting
the documented overexpression of H19 in cancer.
Genes with an adjusted p-value <0.05 were
considered statistically significant. Top-ranked
gene heatmaps were visualized using pheatmap.
Positively and negatively co-expressed genes of
H19 were identified through correlation analyses
employing Spearman’s method.

To evaluate biological relevance, highly
differentially expressed genes were subjected
to enrichment analysis using clusterProfiler.
Gene Ontology biological processes and
Kyoto Encyclopedia of Genes and Genomes
pathways were assessed with mapped org.
Hs.eg.db annotations (14, 15). Furthermore,
co-expression of H19 with candidate miRNAs
(e.g., hsa-miR-675, hsa-miR-21, hsa-miR-200a)
was determined based on correlation statistics.
miRNA-IncRNA interactions were visualized
using ggplot2 barplots.

Multivariate Analysis of H19 and Clinical
Outcomes

Clinical and transcriptomic data from 360
GC patients were analyzed to investigate the
association of H19 expression with cancer
progression and mortality. Tumor grade and
stage were dichotomized (Stage [-1I versus I11—-
IV; Grade G1-G2 versus G3) after standardizing
H19 expression as z-scores. Covariates included
age and sex. Multivariable logistic regression
was applied to assess associations with stage
and grade, while multivariable Cox proportional
hazards models evaluated associations with
mortality. Multicollinearity and proportional
hazards assumptions were tested to validate
model integrity.

Network and Survival Analyses

PPI networks were constructed for
differentially expressed genes using the
STRINGdb interface. Networks  were
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subsequently converted to graph objects using
igraph to facilitate hub gene identification based
on degree centrality.

Survival analysis was performed by
integrating HI19 expression with TCGA
clinical data. Patients were stratified into high-
and low-H19 groups using a median split.
Kaplan—Meier survival plots were generated
with survminer, and statistical significance
was assessed via log-rank tests. Univariate
and multivariate Cox proportional hazards
regression models (via the survival package)
were employed to examine the prognostic impact
of H19 expression while adjusting for clinical
covariates, including age, sex, and tumor stage,
as appropriate. All analyses were conducted in
R (version 4.5.1) (Table 1).

Results
Mutation Landscape of TCGA-STAD Cohort

To characterize the genomic landscape of
STAD, we analyzed somatic mutations in 431
TCGA-STAD samples. Across all samples,
137,650 non-silent mutations were identified,
with missense mutations representing the most
prevalent class. Although less frequent than
missense mutations, insertion/deletion events,
nonsense mutations, and splice-site mutations
also contributed substantially to the overall
mutational spectrum. Among SNPs, C>T
transitions were the most common, consistent
with previous reports attributing these
substitutions to spontaneous 5-methylcytosine
deamination and mismatch repair deficiency,
which are dominant mutational pathways in GC
(Figure 1).

Out of 431 samples, 392 (90.95%) harbored
at least one non-silent mutation. The most
frequently recurrently mutated genes included
TTN (51.2%), TP53 (45.6%), MUCI16 (31.0%),
ARIDIA (26.9%), and LRPIB (26.6%).
Additional genes, including CSMD3, SYNEI,
FAT4, FLG, and PCLO, exhibited mutation
frequencies ranging from 19% to 24%.
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Table 1. R/Bioconductor packages and their utilization in TCGA-STAD mutation and transcriptome dataset analysis.

Purpose in the Study

TCGADbiolinks 2.36.0 Data acquisition from TCGA (mutations, RNA-seq, clinical) (16)
maftools 2.24.0 Mutation visualization, mutational signatures, TMB 17)
GenomicRanges 1.60.0 Handling genomic intervals (18)
biomaRt 2.64.0 Gene annotation, ID mapping, sequence retrieval (19)
DESeq2 1.48.0 Differential expression analysis (20)
clusterProfiler 4.16.0 GO and KEGG enrichment analysis 1)
org.Hs.eg.db 3.21.0 Gene annotation database for Homo sapiens (22)
pheatmap 1.0.13 Heatmap visualization of gene expression data (23)
ggplot2 352 Data visualization (barplots, correlation plots) (24)
survival 3.8-3 Cox proportional hazards modeling (25)
survminer 0.5.0 Kaplan—Meier survival curve visualization (26)
STRINGdb 2.20.0 Protein—protein interaction network construction 27)
igraph 214 Network analysis and visualization (28)
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Figure 1. Landscape of somatic mutations in the TCGA-STAD cohort. Panels display (top left) distribution of variant

classifications, (top center) variant types, and (top right) single nucleotide variant (SNV) classes. The bottom panel shows

variants per sample, a summary of classification totals, and the 10 most frequently recurrently mutated genes (TTN, TP53,
MUCI6, LRPIB, ARIDIA, SYNEI, FAT4, CSMD3, PCLO, and FLG) with mutation rates from 20% to 51%.
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Other recurrently affected genes included
HMCNI, ACVR2A, ZFHX4, DNAHS, OBSCN,
and RYR2 (15-18%). These data highlight the
importance of recurrent mutations in structural
and chromatin-modifying genes in STAD
pathogenesis (Figure 2).

Tumor mutational burden (TMB) analysis
revealed marked heterogeneity. The mean
TMB was 6.39 mutations per megabase (Mb),
ranging from 0.02 to 117. The median TMB
was 1.94, with approximately 10% of samples
(44 cases) classified as high TMB, which may
have implications for immunotherapy response.
The distribution of TMB indicated that most
tumors fell within the low- to moderate-TMB
category, with only a small fraction exhibiting
hypermutated profiles (Figure 3).

Mutational signature analysis identified six
processes contributing to the STAD mutational
landscape. Signature 1 resembled SBSI, reflecting
age-related mutagenesis due to 5-methylcytosine
deamination. Signature 2 resembled SBS40a, of
unknown etiology, while Signature 3 resembled
SBS21, associated with mismatch repair
deficiency. Signatures 4 and 5 corresponded to
SBSI10b (linked to POLE mutations) and SBS15
(another signature indicative of mismatch
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Figure 3. Tumor mutational burden (TMB) across TCGA-

STAD samples. Each dot represents a tumor sample, with

mutation rates in units of mutations per megabase (Mb)

on a logl0 axis. The median TMB was 1.94 mutations/

Mb (dashed red line), with between-patient heterogeneity,
a subgroup with hypermutated profiles.

repair  deficiency), respectively. Finally,
Signature 6 resembled SBS17b, associated with
reactive oxygen species and exposure to 5-FU
chemotherapy. Collectively, these findings
underscore the roles of aging, DNA repair
deficiency, and chemotherapy-induced stress in
the mutational biology of GC (Figure 4).
Clinical Features and Expression Data
RNA-seq expression data were available
for 448 samples, including 412 primary
tumors and 36 solid tissue normal samples.

Altered in 392 (90.95%) of 431 samples.

2
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Figure 2. Oncoplot of the mutational profile of TCGA-STAD. There were 392 of 431 samples (90.95%) with at least one
non-silent mutation. The most commonly mutated genes were TTN (51%), TP53 (46%), MUCI16 (31%), ARIDIA (27%),
and LRP1B (27%). Mutation types are colored according to their categories (missense, frameshift insertions/deletions,
splice-site, in-frame deletions, and multi-hit events), demarcating heterogeneity in mutational profile between patients.

386



http://dx.doi.org/10.18502/jabs.v15i4.19738
https://jabs.fums.ac.ir/article-1-3180-en.html

[ Downloaded from jabs.fums.ac.ir on 2025-11-02 ]

[ DOI: 10.18502/jabs.v15i4.19738 ]

@

Journal of Advanced
Biomedical Sciences

Fasa University of
Medical Sciences

H19 Regulatory Networks in Gastric Cancer

Best match: SBS1 [cosine-similanity: 0.953]
a3 Aetiology: Spontaneous deamination of 5-methylcytosine

a2
- | |
- -BsBe = - - 1al.._0.»

Best match: SBS40a [cosine-similarity: 0.802]

]u_.._ 1Y TR T TN TTTTRN | I TR

Aetiology: Unknown

Best match: SBS21 [cosine-similanity: 0.852]
Aetiology: MMR deficiency

0z
as
.-t 4 A T P

Best match: SBS10b [cosine-similarity: 0.806]
as Aetiology: POLE exonuclease domain mutation

Best match: SBS15 [cosine-similanty: 0.956]

Aetiology: MMR deficiency

Best match: SBS17b [cosine-similarnity: 0.957]
dis Aetiology: Damage by ROS S5FU chemotherapy

CeA CeG Cet

1A 1=C -G

Figure 4. Mutational signature analysis of TCGA-STAD identified six processes, which are largely associated with
age, DNA repair deficiency, POLE mutation, and chemotherapy-induced damage.

After quality control and preprocessing,
60,659 genes were retained for analysis. The
patient cohort comprised 290 males (64.7%)
and 158 females (35.3%), with a median age at
diagnosis of 66.3 years. Survival follow-up data
revealed that 274 patients (61.2%) were alive at
last follow-up, whereas 174 (38.8%) had died.
Tumors were frequently diagnosed at advanced
stages, particularly IIB, IIIA, ITIB, and I'V, and

tumor grading was predominantly moderately
and poorly differentiated (G2 and G3), with a
minority of well-differentiated (GI) tumors.
None of the RNA-seq subset harbored mutations
in canonical driver genes such as TP53, PIK3CA,
KRAS, ARIDIA, or RHOA. Given that RNA-
seq is less sensitive for variant calling than DNA-
based approaches, this absence likely reflects
dataset characteristics rather than true mutation
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Table 2. Extremely significantly differentially expressed genes chosen between high and low H19 expression groups
in TCGA-STAD, with log2 fold change, statistical significance, and expression direction.

log2FC adj p-value

H19 -4.89 2.37E-216 1.19E-211 Down

IGF2 -4.20 1.97E-109 4.95E-105 Down
ATP4A 5.73 2.02E-67 3.38E-63 Up
KRT4 6.08 9.75E-62 1.22E-57 Up
ATP4B 5.27 2.61E-60 2.62E-56 Up

status, suggesting that expression variation was
the dominant feature observed in this cohort.
H19-Associated Transcriptomic
Reprogramming

To evaluate expression changes, patients were
stratified into high- and low-H19 expression
groups. DESeq?2 differential analysis identified
15,179 significantly altered genes (adjusted p
< 0.05), including 7,471 upregulated and 7,708
downregulated genes in the high-expression
group compared to the low-expression group.
Notably, H19 exhibited overall higher expression
in GC relative to normal tissues, consistent with
prior reports. However, when tumor samples
were stratified into high- and low-expression
groups based on the median, DESeq2 modeling
revealed a relative decrease in H19 levels within
the high-expression subgroup. This does not
contradict the tumor-overexpression of H19;
rather, it reflects differences that emerge when
comparing subgroups within tumors rather than
tumors versus normal tissue. In contrast, genes
such as ATP4A, ATP4B, and keratins such
as KRT4 were markedly upregulated. These
observations illustrate the complexity of H19-
associated transcriptional reprogramming in
GC, suggesting that its regulatory impact may
be heterogeneous across patient subgroups rather
than uniform.

Correlation analysis revealed strong positive
correlations between H19 and genes including
IGF2, TCF15, MFAP2, and Cllorf95, suggesting
potential co-regulatory interactions. Genes such
as AKR1B10, CYSTMI, CYP2C18, and CA2
were negatively correlated, indicating opposing
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regulatory pathways. Spearman correlation
coefficients ranging from +0.53 to —0.45
demonstrated robust gene-level correlations with
H19 expression (Table 2, Figure 5).

Pathway Enrichment

Gene Ontology (GO) enrichment analysis of
differentially expressed genes identified 1,030
significantly enriched biological processes. Key
terms included extracellular matrix organization,
extracellular structure organization, cell-cell
adhesion, and cell-substrate adhesion, indicating
that H19-driven gene expression changes
profoundly influence the tumor microenvironment
and tissue architecture (Figure 6A).

KEGG pathway analysis revealed 133
significantly enriched pathways. Among the
most significant were cytoskeletal regulation in
muscle cells, ECM (enrichment of extracellular
matrix)-receptor interaction, protein digestion
and absorption, focal adhesion, and cell adhesion
molecules. These findings suggest novel
roles in structural remodeling, intercellular
communication, and signal transduction in H19-
mediated GC biology (Table 3, Figure 6B).
Association of H19 Expression with Clinical
Parameters and Survival

Multivariate analyses revealed that H19
expression was not significantly associated
with tumor grade or stage. Cox regression
analysis indicated that H19 expression did
not independently predict overall survival. In
contrast, advanced patient age, higher tumor
stage (III-1V), and higher tumor grade (G3)
were strongly associated with poor prognosis,
whereas sex showed no significant effect.
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Figure 5. Heatmap visualization of H19-associated expression patterns in TCGA-STAD. (A) Genes that are differentially
expressed between the high and low H19 expression categories, with evident patient clustering by H19 expression status.
(B) Highest positive and negative correlated genes with H19, illustrating strong co-expression (e.g., IGF2, TCF15) and
inverse correlations (e.g., ATP4A, ATP4B, KRT4). Gradients of color represent scaled expression values (row Z-scores).

The proportional hazards assumption was
satisfied, confirming the validity of the Cox
regression results (Table 4).
Integration of H19 with miRNA Networks
and Clinical Outcome

Given its potential regulatory interactions

with microRNAs, we examined correlations

with

candidate

miRNA partners. HI19

displayed the strongest positive correlation
with hsa-miR-675 (p = 0.64, p < 0.001),
followed by hsa-miR-21 and hsa-miR-216a.
Conversely, it was negatively correlated with
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Figure 6. GO (A) and KEGG (B) enrichment analyses of H19-associated genes indicate pathways for extracellular
matrix organization, cell adhesion, and structural remodeling in TCGA-STAD.

Table 3. Top enriched Gene Ontology biological processes and KEGG pathways of H19 expression in TCGA-STAD,
listing the number of DEGs and adjusted p-values

Pathway Adjusted p-value

Extracellular matrix organization 242 0
Cell-cell adhesion 187 0
ECM-receptor interaction 66 0
Focal adhesion 126 0

Cell adhesion molecules 111 0

Table 4. Multivariable regression analysis of H19 expression and clinical outcomes.

OR/HR 95% CI

Stage (III-1V vs I-1I) HI9 z 0.998 0.726-1.265 0.989
Grade (G3 vs G1-G2) H19 z 0.903 0.728-1.108 0.326
Overall Survival H19 z 1.037 0.896-1.201 0.623
Overall Survival Stage I1I-1V 2.193 1.513-3.180 <0.001
Overall Survival Grade G3 1.517 1.066-2.158 0.021
Overall Survival Age 1.000 1.000-1.000 <0.001

hsa-miR-153 and hsa-miR-200a, suggesting that regulation among patients.

H19 may function within a ceRNA network that Survival analysis of 390 patients stratified by
either promotes or represses the expression of H19 expression revealed a trend toward differential
specific miRNAs (Figure 7A). outcomes, although it did not reach statistical

Candidate miRNA expression across significance (log-rank p = 0.061). Univariate Cox
245 samples was highly heterogeneous. For regression further confirmed that H19 expression
instance, hsa-miR-675 expression ranged from was not an independent predictor of overall
0 to 14,326, with a median of 34, whereas hsa- survival (HR =1.03, 95% CI: 0.89-1.19, p = 0.713).
miR-21 expression was substantially higher Thus, although H19 participates in transcriptional
(median 777,220). These extensive expression and post-transcriptional networks, its prognostic
ranges underscore the heterogeneity of miRNA relevance remains uncertain (Figure 7B).

390



http://dx.doi.org/10.18502/jabs.v15i4.19738
https://jabs.fums.ac.ir/article-1-3180-en.html

[ Downloaded from jabs.fums.ac.ir on 2025-11-02 ]

[ DOI: 10.18502/jabs.v15i4.19738 ]

2

Journal of Advanced
Biomedical Sciences

A 1.36e-29

0.50

-0.25

Fasa University of
Medical Sciences

H19 Regulatory Networks in Gastric Cancer

c i i .

5 6.11e-12 1.23e-11, .. 0 1 89e-10 Correlation

S —

= 0.6

5

£ oz o 04

z 0.0326 0.2

£

: 0.0
0.736

& 0.00 03 0.2

0.000193
N 9% N & >
s & & & &
o N 3 N
- }& ,g.(\

1.00
=2 Strata ~+ group=High ~+ group=Low
50751
©
o
[
©.0.50 1
©
=
€025 R N
A p =0.061

0.00

0 1000 2000 3000 4000
Days
= oTC
Number at risk

8

jroup=High{ 195 24 0 0 0 VDACI
(% ;H.:.,p’_t.‘v-'-"l 195 36 10 3 0 PMPCB

0 1000 é(;(;(; 3000 4000 coRL

Figure 7. Molecular characteristics of H19 in TCGA-STAD. (A) Correlation analysis with high positive correlation with

hsa-miR-675 and correlations with hsa-miR-153 and hsa-miR-200a. (B) Kaplan—Meier survival plots for comparison of

high vs. low H19 expression groups, no significant difference observed (p = 0.061). (C) PPI network with hub genes (e.g.,
GAPDH, COLI1Al, SIRTI1, TGFBI) as representative of the central regulatory pathways.

Finally, PPI analysis of differentially
expressed mRNAs predicted a complex network
comprising 2,184 nodes and 9,461 edges. The
hub genes included GAPDH, COL1A1, CCL2,
SIRT1, and TGFBI, which serve as central
regulators of metabolism, extracellular matrix
signaling, immune modulation, and cell cycle
control. These findings suggest that HI9-
dependent transcriptional programs extend
beyond individual targets to encompass global
regulatory networks in GC (Figure 7C).

Discussion
This study comprehensively characterized
IncRNA H19 in GC using TCGA-STAD

data, revealing recurrent mutations in TTN,
TP53, MUCI16, ARIDIA, and LRPIB, as well
as six mutational processes associated with
aging, mismatch repair deficiency, POLE
hypermutation, and chemotherapy-induced
lesions. Stratification by H19 expression identified
over 15,000 differentially expressed genes
enriched in extracellular matrix organization,
focal adhesion, and cell adhesion pathways.
Co-expression analysis demonstrated positive
correlations with IGF2 and TCF15 and inverse
correlations with ATP4A, ATP4B, and KRT4,
while strong correlation with miR-675 further
supported H19 as a ceRNA hub. Although its
pronounced influence on transcriptional networks
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rendered it an unlikely independent prognostic
factor in GC, these findings underscore its
context-dependent functional role.

These results both corroborate and extend
previous findings. The high mutation frequency
of TP53, TTN, and MUCI16 aligns with prior
genomic studies. The frequent mutations of
TTN, MUCI16, and LRPIB were confirmed by
Zhou et al. (2023) in TCGA-STAD (29), while
TP53 mutations are established drivers of GC
(30). TTN mutations have been linked to elevated
tumor mutational burden (TMB) and enhanced
immunotherapy response (Jia et al.,, 2019)
(31), consistent with our observations. MUC16
mutations, observed in nearly one-third of tumors,
have been associated with high TMB, improved
prognosis, and increased immune infiltration
(32). LRPIB mutations, in contrast, exhibit
context-dependent prognostic effects: although
linked to poor survival in GC with enteroblastic
differentiation (33), our larger cohort suggests
nuanced, subtype-specific outcomes.

Mutational signature analysis provides
mechanistic insight into GC. SBSI, reflecting
spontaneous S-methylcytosine deamination,
emerged as a dominant process, consistent
with Silveira et al. (2024), who identified it
as a principal mutational force in cancers
(34). Signatures indicative of mismatch repair
deficiency corroborate Meier et al. (2018),
who demonstrated a direct link between
MMR loss and hypermutation (35). POLE
mutations, although rare, align with prior reports
associating them with ultrahigh TMB, elevated
immune infiltration, and favorable prognosis
(36). Collectively, these consistencies validate
both our mutational analysis and the utility of
mutational signatures as mechanistic biomarkers.

Our transcriptomic findings are concordant
with previously reported patterns in GC. ECM
remodeling and adhesion pathways reflects earlier
bioinformatic studies highlighting COL1AI,
COL1A2, and COL3A1 as central regulators of
ECM organization (37). Disruption of ECM—
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receptor interactions has been shown to promote
invasion and metastasis (38), while Zhang et al.
(2022) demonstrated that CPNES facilitates
metastasis via focal adhesion signaling (39). Our
results support these observations and suggest
that H19 may contribute to GC progression by
modulating ECM remodeling and adhesion
dynamics.

Although H19 is actively involved in
transcriptional ~ and  post-transcriptional
regulatory circuits, its expression alone does not
serve as an independent prognostic indicator in
GC. Conventional clinical parameters, including
age, tumor grade, and stage, remain more
predictive of patient outcomes. Despite previous
studies, such as Peng et al. (2017), linking
high H19 expression to poorer survival across
multiple cancer types (40), our analysis did not
validate H19 as a standalone prognostic factor
in GC. This apparent discrepancy may reflect
tumor heterogeneity, subtype-specific effects,
cohort composition, or treatment variability,
suggesting that H19’s prognostic relevance is
context-dependent and may be better interpreted
in combination with other markers or molecular
subgroups.

The co-expression of H19 with IGF2 is
consistent with evidence that loss of imprinting
at the Igf2/H19 locus drives proliferative
signaling (41). The positive correlation with
miR-675 aligns with studies in breast and GC
demonstrating H19’s role as a miR-675 precursor,
promoting proliferation and invasion (42).
Conversely, the inverse correlation with ATP4A/
ATP4B represents a novel finding, consistent
with Chen et al. (2022), who identified ATP4A
downregulation as a potential GC diagnostic
biomarker (43). These data suggest that HI9 may
contribute to malignant transformation through
suppression of parietal cell-associated genes.

The principal strengths of this study include
its integrative approach, combining genomic,
transcriptomic, and clinical analyses. The large
sample size, rigorous statistical methodology,
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and network and enrichment analyses enhance
reliability and illuminate the global regulatory
influence of HI9. Importantly, the study
situates H19 within the context of mutational
signatures and immune modulation, illustrating
its multifunctional role in GC biology.

Nonetheless, limitations should be
acknowledged. The retrospective nature of
TCGA data limits clinical interpretability
due to incomplete information on therapy
or comorbidities. The findings are largely
correlative, without experimental validation to
establish causality. Survival analyses may be
influenced by unmeasured confounders, and the
absence of independent cohort validation restricts
generalizability. Functional studies are required
to confirm the described regulatory interactions,
particularly the antagonism between H19 and
ATP4A/ATP4B.

Collectively, these results highlight potential
regulatory roles for HI9 in GC and generate
hypotheses regarding its involvement in invasion,
immune modulation, and chemoresistance.
However, the retrospective design, lack of
detailed clinical data, and correlative approach
preclude definitive conclusions.

Future research should focus on experimental
validation of HI19-associated pathways,
particularly its interactions with ATP4AA/ATP4B
and ECM-related genes. Clinical investigations
should assess whether H19 serves as a marker
of immunotherapy responsiveness, based on its
associations with TMB and ceRNA networks.
Therapeutic targeting of HI19, including
disruption of its ceRNA interactions with miR-
675 and miR-21, may offer strategies to overcome
chemoresistance (44). Finally, integration of
HI9 expression into biomarker panels such
as MSI, PD-L1, and EBV status (45) could
enhance patient stratification and refine precision
oncology approaches in GC.

Conclusion
This study provides hypothesis-generating

Fasa University of
Medical Sciences

H19 Regulatory Networks in Gastric Cancer
insights into the role of HI9 within the
genomic and transcriptomic landscape of
GC. While it highlights potential functions
in  microenvironment modulation and
transcriptional reprogramming, definitive
prognostic or therapeutic implications cannot be
established. Prospective studies and functional
validation are required to confirm these
observations and determine their clinical utility.
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