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Background & Objective: Gastric cancer (GC) remains one of the most prevalent 
and lethal malignancies worldwide, with cisplatin serving as a cornerstone in its 
chemotherapeutic regimen. However, the frequent and often rapid development of cisplatin 
resistance significantly compromises therapeutic efficacy. MicroRNAs (miRNAs) are key 
post-transcriptional regulators that modulate critical cellular mechanisms underlying 
chemoresistance, including apoptosis, DNA repair, drug efflux, and proteostasis. This 
study aimed to identify candidate miRNAs and molecular pathways associated with 
cisplatin resistance through an integrated bioinformatics approach.
Materials & Methods: miRNA expression profiles from the GEO dataset GSE86195, 
comprising cisplatin-sensitive and cisplatin-resistant GC cell lines, were analyzed. 
Differential expression analysis was conducted using limma, followed by functional 
enrichment analysis of validated miRNA targets via clusterProfiler. Family-level 
aggregation, Weighted Gene Co-expression Network Analysis (WGCNA), and Random 
Forest feature ranking were subsequently applied to identify potential hub and predictive 
miRNAs.
Results: Although no miRNAs survived false discovery rate (FDR) correction, an 
exploratory nominal p-value threshold of < 0.05 revealed 957 candidate differentially 
expressed miRNAs (538 upregulated and 416 downregulated). Enrichment analysis 
indicated the involvement of pathways related to nucleocytoplasmic transport, RNA 
splicing, ubiquitin-mediated proteolysis, and platinum drug resistance. A coordinated 
dysregulation of the miR-346, miR-421, and miR-139-5p families was identified. Machine 
learning further highlighted hsa-let-7e and hsa-miR-20a-star as top-ranked predictive 
candidates, although both WGCNA and Random Forest findings should be interpreted 
cautiously due to the limited sample size (n = 4).
Conclusion: This exploratory bioinformatics analysis identifies candidate miRNAs and 
signaling pathways that may underlie cisplatin resistance in GC. The findings should be 
considered hypothesis-generating and warrant validation in larger cohorts (e.g., TCGA) as 
well as experimental confirmation through functional assays prior to clinical translation.
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Introduction
Gastric cancer (GC) remains a significant 

global health challenge, with approximately 1.1 

million new cases and 770,000 deaths reported 
worldwide in 2020 (1). Despite gradual declines 
in incidence in some high-income countries, the 
overall burden is projected to increase, reaching 
1.8 million new cases and 1.3 million deaths by 
2040 (2). Eastern Asia, including China, Japan, 
and the Republic of Korea, continues to exhibit 
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the highest incidence and mortality rates (3). The 
etiology of GC is multifactorial, encompassing 
genetic predispositions, chronic infection 
with Helicobacter pylori, and environmental 
or lifestyle factors such as smoking, high salt 
intake, and obesity (4, 5). Notably, over 15 
million individuals born between 2008 and 
2017 are projected to develop GC during their 
lifetimes, with the majority of risk attributable 
to H. pylori infection (6).

For patients with advanced GC, chemotherapy 
constitutes the primary systemic treatment. 
Cisplatin (DDP) has long been a central 
component of first-line regimens. However, 
the frequent emergence of cisplatin resistance 
substantially undermines therapeutic efficacy 
and contributes to poor survival outcomes (7). 
Resistance arises through multiple mechanisms, 
including enhanced DNA damage repair, 
suppression of apoptosis, increased drug 
efflux, activation of autophagy, and epithelial–
mesenchymal transition (EMT) (7, 8). Therefore, 
elucidating the molecular basis of cisplatin 
resistance is critical for identifying predictive 
biomarkers and developing strategies to 
overcome therapeutic failure.

MicroRNAs (miRNAs), small noncoding 
RNAs of approximately 22 nucleotides, have 
emerged as pivotal regulators of cisplatin 
resistance in GC. Functioning as oncogenes 
or tumor suppressors, miRNAs exert post-
transcriptional control over gene expression by 
binding to complementary sequences in target 
mRNAs. Their dysregulation affects numerous 
processes linked to chemoresistance, including 
apoptosis, DNA repair, drug efflux, and cell cycle 
regulation (8, 9). For instance, miR-25 promotes 
cisplatin resistance by suppressing FOXO3a, a 
critical regulator of apoptosis and the cell cycle 
(10), whereas miR-129 enhances sensitivity by 
targeting P-glycoprotein (11).

Beyond these examples, experimental studies 
have demonstrated that several miRNAs directly 
modulate cisplatin response in GC. A well-

established case is miR-21, which is consistently 
upregulated in resistant GC cells. Overexpression 
of miR-21 attenuates apoptosis following cisplatin 
exposure, whereas its inhibition restores drug 
sensitivity. Mechanistically, miR-21 targets 
PTEN, leading to activation of the PI3K/Akt 
survival pathway (12). Another critical regulator 
is miR-223, which is overexpressed in resistant 
GC cells and promotes resistance by targeting 
FBXW7, a tumor suppressor that governs cell 
cycle progression. Knockdown of miR-223 
enhances cisplatin sensitivity and induces 
apoptosis, highlighting its functional significance 
(13). Conversely, miR-143 functions as a tumor 
suppressor in this context. Its expression is 
diminished in resistant GC cells, and restoring 
miR-143 expression re-sensitizes cells to 
cisplatin. Direct targeting of IGF1R and BCL2 
links miR-143 to both survival and apoptotic 
pathways, underscoring its role as a mediator of 
chemosensitivity (14). Collectively, these studies 
demonstrate that miRNAs not only modulate 
cisplatin response but also serve as potential 
biomarkers and therapeutic targets in GC.

Recent advances in transcriptomics and 
computational biology now enable systematic 
profiling of miRNAs and their regulatory 
networks in resistant versus sensitive GC 
cells. Integrative approaches combining 
differential expression analysis, pathway 
enrichment, and network modeling provide 
deeper insights into convergent resistance 
mechanisms. Nevertheless, the translational 
potential of these findings depends on careful 
interpretation, given the limited sample sizes 
and frequent lack of experimental validation 
in publicly available datasets (15, 16). In light 
of these challenges, the present study utilizes 
a transcriptomic dataset comprising cisplatin-
sensitive and -resistant GC cell lines to identify 
candidate miRNAs and associated pathways. By 
integrating expression profiles with functional 
enrichment, co-expression analysis, and machine 
learning, this work aims to highlight hypothesis-
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generating miRNA signatures that may guide 
future biomarker validation and therapeutic 
development.

Materials & Methods
Data Acquisition and Overview

MicroRNA (miRNA) expression data were 
obtained from the Gene Expression Omnibus 
(GEO) under accession number GSE86195 
https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE86195). 

This dataset profiles two GC cell lines with 
acquired cisplatin resistance (SGC-7901/DDP 
and BGC-823/DDP) along with their parental, 
cisplatin-sensitive counterparts (SGC-7901 and 
BGC-823). Expression measurements were 
generated using the Affymetrix Multispecies 
miRNA-2 Array (GPL14613). Importantly, 
this dataset includes only four samples 
without biological replicates. While this limits 
statistical power and precludes definitive 
conclusions, it provides a valuable exploratory 
resource for generating hypotheses regarding 
miRNA dysregulation in cisplatin resistance. 
All analyses should therefore be interpreted as 
exploratory and hypothesis-generating rather 
than conclusive.
Data Preprocessing and Normalization

Raw microarray text files were downloaded 
and processed in R (version 4.4.2) (Table 1). Data 
import was performed using read.delim, and 
probes lacking expression values were excluded 
(17). To stabilize variance across probes, 
expression intensities were log2-transformed. 

Probes with average expression values greater 
than 4 across the four samples were retained to 
ensure inclusion of reliably detected miRNAs. 
Quality control was conducted using principal 
component analysis (PCA) and correlation 
heatmaps, confirming consistency and 
reproducibility of expression profiles across 
samples.
Experimental Grouping and Design Matrix

Samples were stratified into two groups: 
cisplatin-sensitive (Control: SGC-7901, BGC-
823) and cisplatin-resistant (DDP: SGC-7901/
DDP, BGC-823/DDP). Group assignments 
were encoded as factors within a design matrix 
constructed for downstream modeling. Given 
the absence of replicates, all comparisons 
represent pooled assessments between resistant 
and sensitive cell lines.
Exploratory Quality Control

To evaluate global expression patterns, PCA 
was performed using the prcomp function (17, 
18). PCA plots were generated with ggplot2 
and annotated using ggrepel to enhance clarity. 
This approach facilitated visualization of 
variance between resistant and parental groups. 
Additionally, Pearson correlation heatmaps 
were produced using the pheatmap package, 
confirming high within-group similarity and 
clear separation between resistant and sensitive 
lines. These steps provided confidence that, 
despite the limited sample size, broad expression 
differences could be reliably detected.
Differential Expression Analysis

Differential expression was assessed using 

Table 1. Key R packages utilized in the analysis pipeline, their purposes, versions, and references.
Package Version Purpose in the Study Reference
tidyverse 2.0.0 Data manipulation, transformation, and visualization (18)
ggplot2 3.5.2 Visualization of PCA, volcano, and bar plots (19)

pheatmap 1.0.13 Generation of correlation and expression heatmaps (20)
limma 3.62.2 Differential expression analysis using linear modeling (21)

multiMiR 1.28.0 Retrieval of validated miRNA–mRNA target interactions (22)
clusterProfiler 4.14.6 Gene Ontology and KEGG pathway enrichment analysis (23)

WGCNA 1.73 Weighted gene co-expression network analysis (24)
caret 7.0-1 Machine learning modeling and variable importance estimation (25)
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the limma package, which fits linear models 
to expression data. Contrasts were defined 
as DDP versus Control, and empirical Bayes 
moderation was applied to shrink standard 
errors. Given the small sample size and absence 
of replicates, no miRNAs survived false 
discovery rate (FDR) correction. Therefore, 
a nominal cutoff of p < 0.05 and absolute 
log2 fold change > 1 was applied to identify 
candidate differentially expressed miRNAs 
(DEMs). This unadjusted threshold was 
chosen to maximize hypothesis generation. 
Importantly, all findings are presented as 
exploratory rather than statistically definitive. 
Results were visualized using volcano plots 
to highlight up- and downregulated miRNAs, 
along with heatmaps of the top 20 DEMs 
to illustrate expression clustering between 
resistant and sensitive groups.
Target Prediction and Functional Enrichment

Validated mRNA targets of the top 200 
DEMs were retrieved using the multiMiR 
package, which integrates multiple databases 
of experimentally confirmed interactions. Only 
human miRNAs (prefix “hsa-”) were retained, 
and duplicates or non-targeting entries were 
filtered out to refine the candidate target list. 
Functional annotation was performed using 
clusterProfiler. Gene Ontology (GO) enrichment 
focused on Biological Process terms, whereas 
Kyoto Encyclopedia of Genes and Genomes 
(KEGG) pathway enrichment highlighted 
cancer-related and drug resistance pathways. 
Adjusted p-values ≤ 0.05 were considered 
significant. Visualization was conducted using 
dot plots to represent enrichment significance 
and gene ratios.
miRNA Family-Level Analysis

To assess coordinated regulation, DEMs were 
mapped to families using TargetScanHuman 8.0 
(26). Family-level summaries were calculated, 
including mean log2 fold change and the number 
of members per family. Enriched families 
were visualized using bar plots, emphasizing 

potential cooperative effects of miRNA clusters 
in drug resistance.
Machine Learning for Feature Selection

In addition to Random Forest classification, 
co-expression analysis was initially performed 
using Weighted Gene Co-Expression Network 
Analysis (WGCNA) to detect co-expressed 
miRNA modules based on scale-free topology 
(soft threshold β = 8). The modules identified 
by WGCNA provided a biologically informed 
background for subsequent machine learning. 
The Random Forest classifier was trained using 
the caret package with default parameters. 
Given the very small sample size (n = 4), these 
results should be interpreted as exploratory and 
hypothesis-generating rather than confirmatory. 
Variable importance was extracted, and the 
15 most significant miRNAs contributing to 
classification were depicted in horizontal bar 
plots. These miRNAs, highlighted both by 
co-expression patterns and machine learning 
ranking, represent candidate predictive 
biomarkers of cisplatin resistance.

Results
Global Expression Profiles and Quality 
Assessment

Microarray profiling of four GC cell 
lines—two cisplatin-sensitive parental lines 
(SGC-7901 and BGC-823) and their resistant 
derivatives (SGC-7901/DDP and BGC-823/
DDP)—yielded expression values for 16,176 
miRNAs following log2 transformation and 
filtering (mean expression > 4). Mean expression 
values ranged narrowly (4.951–4.961), with 
stable medians (4.26) across all cell lines. 
Resistant samples exhibited slightly higher 
minimum expression values (3.25–3.26) than 
parental lines (2.94–3.20), whereas maximum 
values were comparable (15.13–15.20). These 
findings suggest that cisplatin resistance is 
not accompanied by global transcriptomic 
reprogramming but instead involves selective 
deregulation of specific miRNAs (Table 2).
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PCA revealed that PC1 and PC2 accounted 
for 35.7% and 32.8% of the total variance, 
respectively, and fully separated resistant 
from sensitive groups. Hierarchical clustering 
initially segregated samples by treatment status 
(resistant versus parental) and subsequently by 
cell line origin. Pearson correlation coefficients 
ranged from 0.9727 to 0.9792, confirming high 
internal reproducibility. While these multivariate 
patterns support the existence of resistance-
associated signatures, the absence of biological 
replicates (n = 1 per condition) and the small 
sample size limit robustness and necessitate 
cautious interpretation.
Differential Expression Analysis

Differential expression testing using limma 
identified no miRNAs meeting the false discovery 
rate (FDR) threshold of 0.05. Consequently, 
an exploratory nominal cutoff (p < 0.05) was 
applied, yielding 957 candidate differentially 
expressed miRNAs (DEMs): 538 upregulated 
and 416 downregulated in resistant cells. A 
volcano plot illustrated these candidates, while 
a heatmap of the top 20 DEMs demonstrated 
consistent clustering of resistant versus sensitive 
lines (Table 3, Figure 1).
Functional Annotation and Enrichment 

Analyses
Gene Ontology (GO) enrichment of validated 

targets of the top 200 DEMs revealed significant 
overrepresentation of nucleocytoplasmic 
transport (GO:0006913, fold enrichment ≈ 
1.99, adjusted p = 4.69 × 10⁻²²) and nuclear 
transport (GO:0051169), both critical for the 
regulated transport of transcription factors 
and DNA repair proteins. Additional enriched 
processes included RNA splicing (GO:0008380), 
proteasome-mediated ubiquitin-dependent 
protein catabolic process (GO:0043161), and 
small GTPase-mediated signal transduction 
(GO:0007264).

KEGG pathway analysis highlighted several 
major enriched pathways: nucleocytoplasmic 
transport (hsa03013, fold enrichment = 2.22, adj. 
p = 3.69 × 10⁻¹¹), endocytosis (hsa04144), and 
proteoglycans in cancer (hsa05205). Resistance-
associated networks, including EGFR tyrosine 
kinase inhibitor resistance (hsa01521, fold 
enrichment = 2.11, adj. p = 8.19 × 10⁻⁸), endocrine 
resistance (hsa01522, fold enrichment = 1.99, adj. 
p = 7.61 × 10⁻⁸), insulin resistance (hsa04931, adj. 
p = 2.84 × 10⁻⁶), and platinum drug resistance 
(hsa01524, adj. p = 0.020), were among the most 
significantly enriched (Table 4, Figure 2).

Table 2. Summary statistics of log2-transformed miRNA expression values across four gastric cancer cell lines.
Cell Line Mean Expression Median Expression Min Expression Max Expression
SGC-7901 4.961 4.26 2.94 15.18
BGC-823 4.957 4.26 3.20 15.13

SGC-7901/DDP 4.960 4.25 3.25 15.20
BGC-823/DDP 4.951 4.26 3.26 15.15

Table 3. Representative top upregulated and downregulated miRNAs in cisplatin-resistant gastric cancer cell lines.
miRNA logFC p-value Regulation

ppy-miR-1301 2.40 4.6 × 10⁻⁵ Upregulated
miR-99a orthologs 1.88–2.13 <0.001 Upregulated

miR-125b-star 1.8 7.1 × 10⁻⁴ Upregulated
miR-505/miR-505-star 2.0 <0.001 Upregulated

miR-424-star –2.49 to –2.39 <0.001 Downregulated
miR-503 –2.24 to –2.06 <0.005 Downregulated

miR-181 family –1.8 to –1.7 <0.02 Downregulated
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Figure 1. Global miRNA expression patterns and differential analysis in cisplatin-sensitive and cisplatin-resistant 
gastric cancer cell lines. (A) Summary statistics of log2-transformed miRNA expression with uniform distributions 

in all four cell lines. (B) PCA shows clear separation of resistant (DDP) and sensitive (Control) groups along PC1 
(35.7%) and PC2 (32.8%). (C) Hierarchical clustering separates samples by treatment status first, then cell line origin. 
(D) Pearson correlation heatmap confirms high within-group reproducibility (r > 0.975). (E) Heatmap of top 20 DEMs 

(unadjusted p < 0.05) shows distinct resistant–sensitive clustering. (F) Volcano plot shows up- and downregulated 
candidate miRNAs for DDP vs. Control comparison.
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Table 4. Summary of significant enriched Gene Ontology (GO) biological processes and KEGG pathways from DEM 
target analysis.

Category Term Fold Enrichment Adjusted p-value Representative Genes
GO-BP Nucleocytoplasmic transport 1.99 4.69 × 10⁻²² XPO1, IPO7, RANBP2
GO-BP Nuclear transport 1.99 4.69 × 10⁻²² KPNB1, TNPO1, NUP98
GO-BP RNA splicing 1.80 3.92 × 10⁻21 SRSF1, SF3B1, HNRNPA1
KEGG Platinum drug resistance 1.48 0.020 BCL2L1, TP53, ATP7A
KEGG EGFR-TKI resistance 2.11 8.19 × 10⁻⁸ EGFR، MTOR، MAP2K1
KEGG Endocrine resistance 1.99 7.54 × 10⁻⁸ PIK3R3, MAPK8, IGF1

Figure 2. Functional enrichment of targets for differentially expressed miRNAs in cisplatin-resistant gastric cancer 
cell lines. (A) GO Biological Process enrichment shows overrepresentation of nucleocytoplasmic transport, nuclear 

transport, RNA splicing, and ubiquitin-mediated protein catabolism. (B) KEGG pathway analysis also shows 
significant enrichment in cancer-related and resistance-associated pathways, e.g., EGFR-TKI resistance, endocrine 

resistance, and insulin resistance. (C) Focused KEGG plot shows “Platinum drug resistance,” “MicroRNAs in 
cancer,” and “Gastric cancer” pathways as the primary mechanisms of cisplatin resistance.
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Family-Level miRNA Dysregulation
Mapping DEMs to miRNA families using 

TargetScanHuman identified 57 deregulated 
families. The most frequently represented were 
miR-346 and miR-421 (each n = 7 members, 
mean logFC = +1.68 and +1.19, respectively), 
followed by miR-139-5p, miR-342-3p, and miR-
324-3p/1913 (each n = 6). While miR-346 and 
miR-342-3p were consistently upregulated, miR-
139-5p exhibited coordinated downregulation 
(mean logFC = –1.11). These coordinated 
patterns suggest that family-level regulation 
may contribute to resistance phenotypes, 
although confirmatory studies are warranted 
(Figure 3). 
Network and Machine Learning Analyses

Weighted Gene Co-Expression Network 
Analysis (WGCNA) did not achieve a reliable 
scale-free topology (β = 8), limiting confidence 
in the inferred modules. Nonetheless, exploratory 
signals indicated putative hub miRNAs, 
including mmu-miR-22-star_st, mml-miR-519b_
st, and xtr-miR-199a-star_st. These should be 
interpreted as preliminary associations rather 
than validated hubs. 

Random Forest analysis successfully 
distinguished resistant from sensitive samples; 
however, this analysis was based on only four 
samples without replicates, rendering the 
results highly susceptible to overfitting and 
statistically unreliable. The top-ranked features 
included dwi-miR-5_st (importance score = 
100), mmu-miR-183_st, hsa-miR-4258_st, 
hp_hsa-mir-101.1_x_st (score = 87.5), cfa-
miR-302a_st, zma-miR164h_st (score = 75), 
hsa-let-7e_st, and hsa-miR-20a-star_st (score 
= 50). These candidates should be considered 
preliminary, hypothesis-generating signals that 
require validation in independent datasets and 
functional experimental models (Figure 4).
Summary of Key Exploratory Findings

Collectively, the results suggest that 
cisplatin resistance in GC cells is shaped by 
selective miRNA deregulation rather than 

global transcriptomic alterations. Exploratory 
enrichment analyses highlight nucleocytoplasmic 
transport, RNA splicing, and ubiquitin-mediated 
proteolysis as processes of interest. Candidate 
miRNAs—including miR-346, miR-421, miR-
139-5p, let-7e, and miR-20a-star—emerge as 
potential contributors. However, due to the 
limited sample size, absence of biological 
replicates, and failure of FDR correction, 
these findings should be interpreted solely as 
hypothesis-generating.

Figure 3. Family-level dysregulation and network 
features of miRNAs in cisplatin-resistant gastric 

cancer cell lines. Differentially expressed miRNAs 
were grouped by TargetScanHuman families, revealing 
coordinated up- or downregulation within significant 

families such as miR-346 and miR-421.
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Discussion
Cisplatin remains the backbone of 

chemotherapy for advanced GC, but its clinical 
utility is often undermined by the frequent 
development of resistance (7, 27). Resistance 
arises through multifaceted mechanisms, 
including impaired apoptosis, dysregulated 
DNA repair, enhanced efflux transport, and 
altered proteostasis. MicroRNAs (miRNAs) 
act as critical post-transcriptional regulators 
of these processes, and their deregulation has 
increasingly been implicated in chemoresistance 
(7, 8). In this study, we integrated transcriptomic 
data, functional enrichment, network modeling, 
and exploratory machine learning to delineate 
miRNA-mediated mechanisms underlying 
cisplatin resistance in GC cell lines.

Our analyses revealed that resistance was 
characterized not by global shifts in miRNA 
expression but by the selective deregulation 
of specific candidates. Principal component 
analysis and hierarchical clustering clearly 
separated resistant from sensitive lines, 
supporting the presence of distinct resistance-

associated signatures. Although no miRNAs met 
statistical significance after false discovery rate 
(FDR) correction, nominal p-values identified 
957 differentially expressed miRNAs (DEMs). 
These exploratory candidates included the miR-
181 family, miR-99a orthologs, miR-346, and 
miR-421, many of which have previously been 
reported to regulate proliferation, migration, 
or drug response in GC and other tumor types 
(28–34). While the lack of FDR significance 
precludes definitive conclusions, the recurrence 
of these miRNAs across independent studies 
underscores their potential biological relevance.

Comparison with earlier studies reveals both 
concordances and divergences. Zhou et al. (2018) 
(35) described the miR-497/MTHFD2 axis in 
cisplatin resistance; although this axis was not 
identified in our study, both analyses emphasize 
miRNA-mediated regulation of drug response. 
Ge et al. (2016) (36) reported miR-421 as a key 
driver of resistance, consistent with our detection 
of its dysregulation. In contrast, findings on the 
hsa_circ_0006427/miR-346/VGLL4 pathway 
in lung cancer (37) involve the same miRNA 

Figure 4. Machine learning-based identification of cisplatin resistance-predictive miRNAs in gastric cancer. Top 15 
ranked miRNAs by variable importance from a Random Forest classifier distinguishing resistant and sensitive cell 
lines. Human-specific miRNAs (e.g., hsa-let-7e_st, hsa-miR-20a-star_st) are some of the top-ranked features, along 

with cross-species orthologs, suggesting putative biomarkers for therapeutic response prediction.

 [
 D

O
I:

 1
0.

18
50

2/
ja

bs
.v

15
i4

.1
97

39
 ]

 
 [

 D
ow

nl
oa

de
d 

fr
om

 ja
bs

.f
um

s.
ac

.ir
 o

n 
20

25
-1

1-
03

 ]
 

                             9 / 13

http://dx.doi.org/10.18502/jabs.v15i4.19739
https://jabs.fums.ac.ir/article-1-3178-en.html


357

Mohammadi K, et al miRNA Mechanisms in Cisplatin Resistance of Gastric Cancer

but differ in cancer type and functional context. 
Broader reviews (38) have shown that miRNAs 
regulate resistance via PI3K/AKT and Wnt/β-
catenin signaling, which aligns with the enriched 
pathways observed in our results. Other studies 
(39) highlighted the tumor microenvironment as 
a major layer of miRNA regulation, whereas our 
investigation focused on cell lines. Additionally, 
circulating miRNA panels (40) have been 
proposed as diagnostic tools, supporting our 
suggestion that miRNAs may serve as candidate 
biomarkers. Overall, while several studies 
corroborate our findings, discrepancies across 
biological models underscore the complexity of 
miRNA-mediated cisplatin resistance.

Target enrichment analysis implicated 
nucleocytoplasmic transport, RNA splicing, 
and ubiquitin-mediated proteolysis, processes 
consistently associated with chemoresistance. 
Disrupted miRNA nuclear transport may impair 
regulatory feedback loops (41–44), aberrant 
splicing facilitates apoptosis evasion (45), and 
altered ubiquitination modulates the degradation 
of oncogenic or tumor-suppressive proteins 
(46–48). Notably, platinum drug resistance 
and EGFR-TKI resistance emerged as enriched 
pathways, indicating overlap with clinically 
observed resistance phenotypes (7, 27, 49).

At the family level, coordinated upregulation 
of miR-346 and miR-421 and downregulation 
of miR-139-5p suggest potential cooperative 
regulation. These observations align with reports 
that miR-346 promotes tumor growth (33) and 
miR-421 enhances cell proliferation (34), while 
miR-139-5p functions as a tumor suppressor 
in GC (50). Such convergence highlights the 
value of family-level analyses compared with 
individual miRNA evaluations.

Machine learning and network analyses 
provided additional, though preliminary, 
insights. Random Forest highlighted hsa-
let-7e and hsa-miR-20a-star among the top-
ranked features distinguishing resistant from 
sensitive cells, suggesting their potential as 

candidate biomarkers. However, these results 
must be interpreted with extreme caution, given 
the very small sample size (n = 4). Similarly, 
Weighted Gene Co-expression Network Analysis 
(WGCNA) did not achieve scale-free topology, 
limiting confidence in hub assignments. 
Accordingly, both approaches should be 
regarded as hypothesis-generating tools rather 
than confirmatory evidence.

Overall, the integrative framework applied 
here situates candidate miRNAs within 
functional networks underpinning cisplatin 
resistance. While exploratory, these findings 
provide a rationale for further validation and 
experimental interrogation of nuclear transport, 
ubiquitin–proteasome signaling, and selected 
miRNA families as potential therapeutic targets.
Limitations and Future Work

This study has several notable limitations. 
First, it relied exclusively on the GSE86195 
dataset, which included only four samples without 
biological replicates, a major constraint that 
severely limits statistical power. Second, none 
of the differentially expressed miRNAs passed 
FDR correction, and all findings were derived 
from nominal p-values, necessitating cautious 
interpretation as exploratory, hypothesis-
generating evidence rather than definitive 
conclusions. Third, the exclusive reliance on 
cell lines limits biological generalizability, as in 
vitro systems do not fully recapitulate the tumor 
microenvironment or patient heterogeneity. 
Fourth, network analysis (WGCNA) and 
machine learning (Random Forest) were 
applied to a dataset not statistically suited for 
such modeling; therefore, results should be 
considered preliminary indicators only. Finally, 
the study lacked experimental validation (e.g., 
qRT-PCR, knockdown, or luciferase assays), 
which is essential for confirming computational 
predictions.

Future studies should address these 
limitations. Validation of candidate miRNAs 
such as hsa-let-7e, hsa-miR-20a-star, miR-346,  
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and miR-421 in independent datasets (e.g., 
TCGA) and patient cohorts is critical. Integration 
with clinical outcomes would enable assessment 
of predictive and prognostic value. Functional 
assays should determine whether modulation of 
these miRNAs can restore cisplatin sensitivity in 
vitro or in vivo. Moreover, therapeutic strategies 
combining cisplatin with inhibitors of nuclear 
transport or the ubiquitin–proteasome pathway 
(47, 49, 51) could be explored. Ultimately, multi-
institutional collaborations and patient-derived 
models will be required to establish the clinical 
translatability of these findings.

Conclusion
This study provides an exploratory 

transcriptomic and systems-level perspective 
on miRNA-mediated cisplatin resistance in 
GC. Although limited by small sample size, 
absence of FDR-significant results, and lack 
of experimental validation, the integrative 
approach identified candidate miRNAs and 
convergent pathways—including nuclear–
cytoplasmic transport, ubiquitin-mediated 
proteolysis, and platinum drug resistance—that 
may contribute to therapy failure. These results 
should be regarded as hypothesis-generating and 
require rigorous validation in larger datasets 
and experimental studies. If confirmed, the 
highlighted miRNAs and pathways may serve 
as promising biomarkers and therapeutic targets, 
advancing precision oncology approaches to 
overcome cisplatin resistance in GC.
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