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Background & Objective: Gastric cancer (GC) remains one of the most prevalent
and lethal malignancies worldwide, with cisplatin serving as a cornerstone in its
chemotherapeutic regimen. However, the frequent and often rapid development of cisplatin
resistance significantly compromises therapeutic efficacy. MicroRNAs (miRNAs) are key
post-transcriptional regulators that modulate critical cellular mechanisms underlying
chemoresistance, including apoptosis, DNA repair, drug efflux, and proteostasis. This
study aimed to identify candidate miRNAs and molecular pathways associated with
cisplatin resistance through an integrated bioinformatics approach.

Materials & Methods: miRNA expression profiles from the GEO dataset GSES86195,
comprising cisplatin-sensitive and cisplatin-resistant GC cell lines, were analyzed.
Differential expression analysis was conducted using /imma, followed by functional
enrichment analysis of validated miRNA targets via clusterProfiler. Family-level
aggregation, Weighted Gene Co-expression Network Analysis (WGCNA), and Random
Forest feature ranking were subsequently applied to identify potential hub and predictive
miRNAs.

Results: Although no miRNAs survived false discovery rate (FDR) correction, an
exploratory nominal p-value threshold of < 0.05 revealed 957 candidate differentially
expressed miRNAs (538 upregulated and 416 downregulated). Enrichment analysis
indicated the involvement of pathways related to nucleocytoplasmic transport, RNA
splicing, ubiquitin-mediated proteolysis, and platinum drug resistance. A coordinated
dysregulation of the miR-346, miR-421, and miR-139-5p families was identified. Machine
learning further highlighted /hsa-let-7e and hsa-miR-20a-star as top-ranked predictive
candidates, although both WGCNA and Random Forest findings should be interpreted
cautiously due to the limited sample size (n = 4).

Conclusion: This exploratory bioinformatics analysis identifies candidate miRNAs and
signaling pathways that may underlie cisplatin resistance in GC. The findings should be
considered hypothesis-generating and warrant validation in larger cohorts (e.g., TCGA) as
well as experimental confirmation through functional assays prior to clinical translation.
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Introduction

Gastric cancer (GC) remains a significant
global health challenge, with approximately 1.1

million new cases and 770,000 deaths reported
worldwide in 2020 (1). Despite gradual declines
in incidence in some high-income countries, the

B Corresponding Author: Reza Safaralizadeh,
Department of Animal Biology, Faculty of Natural
Sciences, University of Tabriz, Tabriz, Iran.

Email: safaralizadeh@tabrizu.ac.ir

@ 02

NC

348

overall burden is projected to increase, reaching
1.8 million new cases and 1.3 million deaths by
2040 (2). Eastern Asia, including China, Japan,
and the Republic of Korea, continues to exhibit
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the highest incidence and mortality rates (3). The
etiology of GC is multifactorial, encompassing
genetic predispositions, chronic infection
with Helicobacter pylori, and environmental
or lifestyle factors such as smoking, high salt
intake, and obesity (4, 5). Notably, over 15
million individuals born between 2008 and
2017 are projected to develop GC during their
lifetimes, with the majority of risk attributable
to H. pylori infection (6).

For patients with advanced GC, chemotherapy
constitutes the primary systemic treatment.
Cisplatin (DDP) has long been a central
component of first-line regimens. However,
the frequent emergence of cisplatin resistance
substantially undermines therapeutic efficacy
and contributes to poor survival outcomes (7).
Resistance arises through multiple mechanisms,
including enhanced DNA damage repair,
suppression of apoptosis, increased drug
efflux, activation of autophagy, and epithelial—
mesenchymal transition (EMT) (7, 8). Therefore,
elucidating the molecular basis of cisplatin
resistance is critical for identifying predictive
biomarkers and developing strategies to
overcome therapeutic failure.

MicroRNAs (miRNAs), small noncoding
RNAs of approximately 22 nucleotides, have
emerged as pivotal regulators of cisplatin
resistance in GC. Functioning as oncogenes
or tumor suppressors, miRNAs exert post-
transcriptional control over gene expression by
binding to complementary sequences in target
mRNAs. Their dysregulation affects numerous
processes linked to chemoresistance, including
apoptosis, DNA repair, drug efflux, and cell cycle
regulation (8, 9). For instance, miR-25 promotes
cisplatin resistance by suppressing FOXO3a, a
critical regulator of apoptosis and the cell cycle
(10), whereas miR-129 enhances sensitivity by
targeting P-glycoprotein (11).

Beyond these examples, experimental studies
have demonstrated that several miRNAs directly
modulate cisplatin response in GC. A well-
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established case is miR-21, which is consistently
upregulated in resistant GC cells. Overexpression
of miR-21 attenuates apoptosis following cisplatin
exposure, whereas its inhibition restores drug
sensitivity. Mechanistically, miR-2] targets
PTEN, leading to activation of the PI3K/Akt
survival pathway (12). Another critical regulator
s miR-223, which is overexpressed in resistant
GC cells and promotes resistance by targeting
FBXW7, a tumor suppressor that governs cell
cycle progression. Knockdown of miR-223
enhances cisplatin sensitivity and induces
apoptosis, highlighting its functional significance
(13). Conversely, miR-143 functions as a tumor
suppressor in this context. Its expression is
diminished in resistant GC cells, and restoring
miR-143 expression re-sensitizes cells to
cisplatin. Direct targeting of /GFIR and BCL2
links miR-143 to both survival and apoptotic
pathways, underscoring its role as a mediator of
chemosensitivity (14). Collectively, these studies
demonstrate that miRNAs not only modulate
cisplatin response but also serve as potential
biomarkers and therapeutic targets in GC.
Recent advances in transcriptomics and
computational biology now enable systematic
profiling of miRNAs and their regulatory
networks in resistant versus sensitive GC
cells. Integrative approaches combining
differential expression analysis, pathway
enrichment, and network modeling provide
deeper insights into convergent resistance
mechanisms. Nevertheless, the translational
potential of these findings depends on careful
interpretation, given the limited sample sizes
and frequent lack of experimental validation
in publicly available datasets (15, 16). In light
of these challenges, the present study utilizes
a transcriptomic dataset comprising cisplatin-
sensitive and -resistant GC cell lines to identify
candidate miRNAs and associated pathways. By
integrating expression profiles with functional
enrichment, co-expression analysis, and machine
learning, this work aims to highlight hypothesis-
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generating miRNA signatures that may guide
future biomarker validation and therapeutic
development.

Materials & Methods
Data Acquisition and Overview

MicroRNA (miRNA) expression data were
obtained from the Gene Expression Omnibus
(GEO) under accession number GSE86195
https://www.ncbi.nlm.nih.gov/geo/query/acc.
cgi?acc=GSE86195).

This dataset profiles two GC cell lines with
acquired cisplatin resistance (SGC-7901/DDP
and BGC-823/DDP) along with their parental,
cisplatin-sensitive counterparts (SGC-7901 and
BGC-823). Expression measurements were
generated using the Affymetrix Multispecies
miRNA-2 Array (GPL14613). Importantly,
this dataset includes only four samples
without biological replicates. While this limits
statistical power and precludes definitive
conclusions, it provides a valuable exploratory
resource for generating hypotheses regarding
miRNA dysregulation in cisplatin resistance.
All analyses should therefore be interpreted as
exploratory and hypothesis-generating rather
than conclusive.

Data Preprocessing and Normalization

Raw microarray text files were downloaded
and processed in R (version 4.4.2) (Table 1). Data
import was performed using read.delim, and
probes lacking expression values were excluded
(17). To stabilize variance across probes,
expression intensities were log2-transformed.
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Probes with average expression values greater
than 4 across the four samples were retained to
ensure inclusion of reliably detected miRNAs.
Quality control was conducted using principal
component analysis (PCA) and correlation
heatmaps, confirming consistency and
reproducibility of expression profiles across
samples.
Experimental Grouping and Design Matrix

Samples were stratified into two groups:
cisplatin-sensitive (Control: SGC-7901, BGC-
823) and cisplatin-resistant (DDP: SGC-7901/
DDP, BGC-823/DDP). Group assignments
were encoded as factors within a design matrix
constructed for downstream modeling. Given
the absence of replicates, all comparisons
represent pooled assessments between resistant
and sensitive cell lines.
Exploratory Quality Control

To evaluate global expression patterns, PCA
was performed using the prcomp function (17,
18). PCA plots were generated with ggplot2
and annotated using ggrepel to enhance clarity.
This approach facilitated visualization of
variance between resistant and parental groups.
Additionally, Pearson correlation heatmaps
were produced using the pheatmap package,
confirming high within-group similarity and
clear separation between resistant and sensitive
lines. These steps provided confidence that,
despite the limited sample size, broad expression
differences could be reliably detected.
Differential Expression Analysis

Differential expression was assessed using

Table 1. Key R packages utilized in the analysis pipeline, their purposes, versions, and references.

tidyverse 2.0.0 Data manipulation, transformation, and visualization (18)
ggplot2 352 Visualization of PCA, volcano, and bar plots (19)
pheatmap 1.0.13 Generation of correlation and expression heatmaps (20)
limma 3.62.2 Differential expression analysis using linear modeling 21)
multiMiR 1.28.0 Retrieval of validated miRNA-mRNA target interactions (22)
clusterProfiler 4.14.6 Gene Ontology and KEGG pathway enrichment analysis (23)
WGCNA 1.73 Weighted gene co-expression network analysis (24)
caret 7.0-1 Machine learning modeling and variable importance estimation (25)

350



http://dx.doi.org/10.18502/jabs.v15i4.19739
https://jabs.fums.ac.ir/article-1-3178-en.html

[ Downloaded from jabs.fums.ac.ir on 2025-11-03 ]

[ DOI: 10.18502/jabs v15i4.19739 ]

W

Journal of Advanced
Biomedical Sciences

the limma package, which fits linear models
to expression data. Contrasts were defined
as DDP versus Control, and empirical Bayes
moderation was applied to shrink standard
errors. Given the small sample size and absence
of replicates, no miRNAs survived false
discovery rate (FDR) correction. Therefore,
a nominal cutoff of p < 0.05 and absolute
log2 fold change > 1 was applied to identify
candidate differentially expressed miRNAs
(DEMs). This unadjusted threshold was
chosen to maximize hypothesis generation.
Importantly, all findings are presented as
exploratory rather than statistically definitive.
Results were visualized using volcano plots
to highlight up- and downregulated miRNAs,
along with heatmaps of the top 20 DEMs
to illustrate expression clustering between
resistant and sensitive groups.
Target Prediction and Functional Enrichment

Validated mRNA targets of the top 200
DEMs were retrieved using the multiMiR
package, which integrates multiple databases
of experimentally confirmed interactions. Only
human miRNAs (prefix “hsa-") were retained,
and duplicates or non-targeting entries were
filtered out to refine the candidate target list.
Functional annotation was performed using
clusterProfiler. Gene Ontology (GO) enrichment
focused on Biological Process terms, whereas
Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment highlighted
cancer-related and drug resistance pathways.
Adjusted p-values < 0.05 were considered
significant. Visualization was conducted using
dot plots to represent enrichment significance
and gene ratios.
miRNA Family-Level Analysis

To assess coordinated regulation, DEMs were
mapped to families using TargetScanHuman 8.0
(26). Family-level summaries were calculated,
including mean log2 fold change and the number
of members per family. Enriched families
were visualized using bar plots, emphasizing
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potential cooperative effects of miRNA clusters
in drug resistance.
Machine Learning for Feature Selection

In addition to Random Forest classification,
co-expression analysis was initially performed
using Weighted Gene Co-Expression Network
Analysis (WGCNA) to detect co-expressed
miRNA modules based on scale-free topology
(soft threshold B = 8). The modules identified
by WGCNA provided a biologically informed
background for subsequent machine learning.
The Random Forest classifier was trained using
the caret package with default parameters.
Given the very small sample size (n = 4), these
results should be interpreted as exploratory and
hypothesis-generating rather than confirmatory.
Variable importance was extracted, and the
15 most significant miRNAs contributing to
classification were depicted in horizontal bar
plots. These miRNAs, highlighted both by
co-expression patterns and machine learning
ranking, represent candidate predictive
biomarkers of cisplatin resistance.

Results
Global Expression Profiles and Quality
Assessment

Microarray profiling of four GC cell
lines—two cisplatin-sensitive parental lines
(SGC-7901 and BGC-823) and their resistant
derivatives (SGC-7901/DDP and BGC-823/
DDP)—yielded expression values for 16,176
miRNAs following log2 transformation and
filtering (mean expression > 4). Mean expression
values ranged narrowly (4.951-4.961), with
stable medians (4.26) across all cell lines.
Resistant samples exhibited slightly higher
minimum expression values (3.25-3.26) than
parental lines (2.94-3.20), whereas maximum
values were comparable (15.13—15.20). These
findings suggest that cisplatin resistance is
not accompanied by global transcriptomic
reprogramming but instead involves selective
deregulation of specific miRNAs (Table 2).
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Table 2. Summary statistics of log2-transformed miRNA expression values across four gastric cancer cell lines.

Cell Line Median Expression

SGC-7901 4.961
BGC-823 4.957
SGC-7901/DDP 4.960
BGC-823/DDP 4.951

4.26
4.26
4.25
4.26

2.94 15.18
3.20 15.13
3.25 15.20
3.26 15.15

Table 3. Representative top upregulated and downregulated miRNAs in cisplatin-resistant gastric cancer cell lines.

ppy-miR-1301 2.40 4.6 x 107 Upregulated
miR-99a orthologs 1.88-2.13 <0.001 Upregulated
miR-125b-star 1.8 7.1 x10°* Upregulated
miR-505/miR-505-star 2.0 <0.001 Upregulated
miR-424-star —2.49 to —2.39 <0.001 Downregulated
miR-503 —2.24 to -2.06 <0.005 Downregulated
miR-181 family —1.8to 1.7 <0.02 Downregulated
PCA revealed that PC1 and PC2 accounted Analyses

for 35.7% and 32.8% of the total variance,
respectively, and fully separated resistant
from sensitive groups. Hierarchical clustering
initially segregated samples by treatment status
(resistant versus parental) and subsequently by
cell line origin. Pearson correlation coefficients
ranged from 0.9727 to 0.9792, confirming high
internal reproducibility. While these multivariate
patterns support the existence of resistance-
associated signatures, the absence of biological
replicates (n = 1 per condition) and the small
sample size limit robustness and necessitate
cautious interpretation.
Differential Expression Analysis

Differential expression testing using /imma
identified no miRNAs meeting the false discovery
rate (FDR) threshold of 0.05. Consequently,
an exploratory nominal cutoff (p < 0.05) was
applied, yielding 957 candidate differentially
expressed miRNAs (DEMs): 538 upregulated
and 416 downregulated in resistant cells. A
volcano plot illustrated these candidates, while
a heatmap of the top 20 DEMs demonstrated
consistent clustering of resistant versus sensitive
lines (Table 3, Figure 1).
Functional Annotation and Enrichment

352

Gene Ontology (GO) enrichment of validated
targets of the top 200 DEMs revealed significant
overrepresentation of nucleocytoplasmic
transport (GO:0006913, fold enrichment ~
1.99, adjusted p = 4.69 x 107??) and nuclear
transport (GO:0051169), both critical for the
regulated transport of transcription factors
and DNA repair proteins. Additional enriched
processes included RNA splicing (GO:0008380),
proteasome-mediated  ubiquitin-dependent
protein catabolic process (GO:0043161), and
small GTPase-mediated signal transduction
(GO:0007264).

KEGG pathway analysis highlighted several
major enriched pathways: nucleocytoplasmic
transport (hsa03013, fold enrichment = 2.22, adj.
p = 3.69 x 107", endocytosis (hsa04144), and
proteoglycans in cancer (hsa05205). Resistance-
associated networks, including EGFR tyrosine
kinase inhibitor resistance (hsa01521, fold
enrichment =2.11, adj. p=8.19 x 107¥), endocrine
resistance (hsa01522, fold enrichment = 1.99, ad;.
p="7.61 x 107®), insulin resistance (hsa04931, ad;.
p =2.84 x 10°°), and platinum drug resistance
(hsa01524, adj. p = 0.020), were among the most
significantly enriched (Table 4, Figure 2).
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(A) Summary Statistics of miRNA Expression Levels Across Four Gastric Cancer Cell Lines
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Figure 1. Global miRNA expression patterns and differential analysis in cisplatin-sensitive and cisplatin-resistant
gastric cancer cell lines. (A) Summary statistics of log2-transformed miRNA expression with uniform distributions
in all four cell lines. (B) PCA shows clear separation of resistant (DDP) and sensitive (Control) groups along PC1
(35.7%) and PC2 (32.8%). (C) Hierarchical clustering separates samples by treatment status first, then cell line origin.
(D) Pearson correlation heatmap confirms high within-group reproducibility (r > 0.975). (E) Heatmap of top 20 DEMs
(unadjusted p < 0.05) shows distinct resistant—sensitive clustering. (F) Volcano plot shows up- and downregulated
candidate miRNAs for DDP vs. Control comparison.
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Table 4. Summary of significant enriched Gene Ontology (GO) biological processes and KEGG pathways from DEM
target analysis.

Term Fold Enrichment | Adjusted p-value Representative Genes

GO-BP Nucleocytoplasmic transport 1.99 4.69 x 10722 XPOl, IPO7, RANBP2
GO-BP Nuclear transport 1.99 4.69 x 1022 KPNBI1, TNPOI1, NUP98
GO-BP RNA splicing 1.80 3.92 x 102! SRSF1, SF3B1, HNRNPA1
KEGG Platinum drug resistance 1.48 0.020 BCL2LI, TP53, ATP7A
KEGG EGFR-TKI resistance 2.11 8.19 x 10# EGFR¢ MTOR: MAP2K1
KEGG Endocrine resistance 1.99 7.54 x 108 PIK3R3, MAPKS, IGF1
GO Enrichment of miRNA Targets
(A) Ll (B) KEGG Oathway Impact of DE miRNAs
BHA ol @ Endocytosis
N p.adjust
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protein localization @ 1 infection ® e om0
B e
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Figure 2. Functional enrichment of targets for differentially expressed miRNAs in cisplatin-resistant gastric cancer
cell lines. (A) GO Biological Process enrichment shows overrepresentation of nucleocytoplasmic transport, nuclear
transport, RNA splicing, and ubiquitin-mediated protein catabolism. (B) KEGG pathway analysis also shows
significant enrichment in cancer-related and resistance-associated pathways, e.g., EGFR-TKI resistance, endocrine
resistance, and insulin resistance. (C) Focused KEGG plot shows “Platinum drug resistance,” “MicroRNAs in
cancer,” and “Gastric cancer” pathways as the primary mechanisms of cisplatin resistance.
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Family-Level miRNA Dysregulation

Mapping DEMs to miRNA families using
TargetScanHuman identified 57 deregulated
families. The most frequently represented were
miR-346 and miR-421 (each n = 7 members,
mean logFC = +1.68 and +1.19, respectively),
followed by miR-139-5p, miR-342-3p, and miR-
324-3p/1913 (each n = 6). While miR-346 and
miR-342-3p were consistently upregulated, miR-
139-5p exhibited coordinated downregulation
(mean logFC = —1.11). These coordinated
patterns suggest that family-level regulation
may contribute to resistance phenotypes,
although confirmatory studies are warranted
(Figure 3).

Network and Machine Learning Analyses

Weighted Gene Co-Expression Network
Analysis (WGCNA) did not achieve a reliable
scale-free topology (B = 8), limiting confidence
in the inferred modules. Nonetheless, exploratory
signals indicated putative hub miRNAs,
including mmu-miR-22-star st, mml-miR-519b
st, and xtr-miR-199a-star st. These should be
interpreted as preliminary associations rather
than validated hubs.

Random Forest analysis successfully
distinguished resistant from sensitive samples;
however, this analysis was based on only four
samples without replicates, rendering the
results highly susceptible to overfitting and
statistically unreliable. The top-ranked features
included dwi-miR-5 st (importance score =
100), mmu-miR-183 st, hsa-miR-4258 st,
hp hsa-mir-101.1 _x st (score = 87.5), cfa-
miR-302a_st, zma-miR164h_st (score = 75),
hsa-let-7e¢ st, and hsa-miR-20a-star st (score
= 50). These candidates should be considered
preliminary, hypothesis-generating signals that
require validation in independent datasets and
functional experimental models (Figure 4).
Summary of Key Exploratory Findings

Collectively, the results suggest that
cisplatin resistance in GC cells is shaped by
selective miRNA deregulation rather than
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Significant miRNAs Grouped by Family
Based on logF C-filttered, mapped miRNAs
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Figure 3. Family-level dysregulation and network
features of miRNAs in cisplatin-resistant gastric
cancer cell lines. Differentially expressed miRNAs
were grouped by TargetScanHuman families, revealing
coordinated up- or downregulation within significant
families such as miR-346 and miR-421.

global transcriptomic alterations. Exploratory
enrichment analyses highlight nucleocytoplasmic
transport, RNA splicing, and ubiquitin-mediated
proteolysis as processes of interest. Candidate
miRNAs—including miR-346, miR-421, miR-
139-5p, let-7e, and miR-20a-star—emerge as
potential contributors. However, due to the
limited sample size, absence of biological
replicates, and failure of FDR correction,
these findings should be interpreted solely as
hypothesis-generating.
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Figure 4. Machine learning-based identification of cisplatin resistance-predictive miRNAs in gastric cancer. Top 15

ranked miRNAs by variable importance from a Random Forest classifier distinguishing resistant and sensitive cell

lines. Human-specific miRNAs (e.g., hsa-let-7e_st, hsa-miR-20a-star_st) are some of the top-ranked features, along
with cross-species orthologs, suggesting putative biomarkers for therapeutic response prediction.
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Discussion

Cisplatin  remains the backbone of
chemotherapy for advanced GC, but its clinical
utility is often undermined by the frequent
development of resistance (7, 27). Resistance
arises through multifaceted mechanisms,
including impaired apoptosis, dysregulated
DNA repair, enhanced efflux transport, and
altered proteostasis. MicroRNAs (miRNAs)
act as critical post-transcriptional regulators
of these processes, and their deregulation has
increasingly been implicated in chemoresistance
(7, 8). In this study, we integrated transcriptomic
data, functional enrichment, network modeling,
and exploratory machine learning to delineate
miRNA-mediated mechanisms underlying
cisplatin resistance in GC cell lines.

Our analyses revealed that resistance was
characterized not by global shifts in miRNA
expression but by the selective deregulation
of specific candidates. Principal component
analysis and hierarchical clustering clearly
separated resistant from sensitive lines,
supporting the presence of distinct resistance-
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associated signatures. Although no miRNAs met
statistical significance after false discovery rate
(FDR) correction, nominal p-values identified
957 differentially expressed miRNAs (DEMs).
These exploratory candidates included the miR-
181 family, miR-99a orthologs, miR-346, and
miR-421, many of which have previously been
reported to regulate proliferation, migration,
or drug response in GC and other tumor types
(28-34). While the lack of FDR significance
precludes definitive conclusions, the recurrence
of these miRNAs across independent studies
underscores their potential biological relevance.

Comparison with earlier studies reveals both
concordances and divergences. Zhou et al. (2018)
(35) described the miR-497/MTHFD?2 axis in
cisplatin resistance; although this axis was not
identified in our study, both analyses emphasize
miRNA-mediated regulation of drug response.
Ge et al. (2016) (36) reported miR-421 as a key
driver of resistance, consistent with our detection
of its dysregulation. In contrast, findings on the
hsa_circ_0006427/miR-346/VGLL4 pathway
in lung cancer (37) involve the same miRNA
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but differ in cancer type and functional context.
Broader reviews (38) have shown that miRNAs
regulate resistance via PI3K/AKT and Wnt/j3-
catenin signaling, which aligns with the enriched
pathways observed in our results. Other studies
(39) highlighted the tumor microenvironment as
a major layer of miRNA regulation, whereas our
investigation focused on cell lines. Additionally,
circulating miRNA panels (40) have been
proposed as diagnostic tools, supporting our
suggestion that miRNAs may serve as candidate
biomarkers. Overall, while several studies
corroborate our findings, discrepancies across
biological models underscore the complexity of
miRNA-mediated cisplatin resistance.

Target enrichment analysis implicated
nucleocytoplasmic transport, RNA splicing,
and ubiquitin-mediated proteolysis, processes
consistently associated with chemoresistance.
Disrupted miRNA nuclear transport may impair
regulatory feedback loops (41-44), aberrant
splicing facilitates apoptosis evasion (45), and
altered ubiquitination modulates the degradation
of oncogenic or tumor-suppressive proteins
(46—48). Notably, platinum drug resistance
and EGFR-TKI resistance emerged as enriched
pathways, indicating overlap with clinically
observed resistance phenotypes (7, 27, 49).

At the family level, coordinated upregulation
of miR-346 and miR-42] and downregulation
of miR-139-5p suggest potential cooperative
regulation. These observations align with reports
that miR-346 promotes tumor growth (33) and
miR-421 enhances cell proliferation (34), while
miR-139-5p functions as a tumor suppressor
in GC (50). Such convergence highlights the
value of family-level analyses compared with
individual miRNA evaluations.

Machine learning and network analyses
provided additional, though preliminary,
insights. Random Forest highlighted hsa-
let-7e and hsa-miR-20a-star among the top-
ranked features distinguishing resistant from
sensitive cells, suggesting their potential as

Fasa University of
Medical Sciences
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candidate biomarkers. However, these results
must be interpreted with extreme caution, given
the very small sample size (n = 4). Similarly,
Weighted Gene Co-expression Network Analysis
(WGCNA) did not achieve scale-free topology,
limiting confidence in hub assignments.
Accordingly, both approaches should be
regarded as hypothesis-generating tools rather
than confirmatory evidence.

Overall, the integrative framework applied
here situates candidate miRNAs within
functional networks underpinning cisplatin
resistance. While exploratory, these findings
provide a rationale for further validation and
experimental interrogation of nuclear transport,
ubiquitin—proteasome signaling, and selected
miRNA families as potential therapeutic targets.
Limitations and Future Work

This study has several notable limitations.
First, it relied exclusively on the GSE86195
dataset, which included only four samples without
biological replicates, a major constraint that
severely limits statistical power. Second, none
of the differentially expressed miRNAs passed
FDR correction, and all findings were derived
from nominal p-values, necessitating cautious
interpretation as exploratory, hypothesis-
generating evidence rather than definitive
conclusions. Third, the exclusive reliance on
cell lines limits biological generalizability, as in
vitro systems do not fully recapitulate the tumor
microenvironment or patient heterogeneity.
Fourth, network analysis (WGCNA) and
machine learning (Random Forest) were
applied to a dataset not statistically suited for
such modeling; therefore, results should be
considered preliminary indicators only. Finally,
the study lacked experimental validation (e.g.,
gRT-PCR, knockdown, or luciferase assays),
which is essential for confirming computational
predictions.

Future studies should address these
limitations. Validation of candidate miRNAs
such as hsa-let-7e, hsa-miR-20a-star, miR-346,
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and miR-42] in independent datasets (e.g.,
TCGA) and patient cohorts is critical. Integration
with clinical outcomes would enable assessment
of predictive and prognostic value. Functional
assays should determine whether modulation of
these miRNAs can restore cisplatin sensitivity in
vitro or in vivo. Moreover, therapeutic strategies
combining cisplatin with inhibitors of nuclear
transport or the ubiquitin—proteasome pathway
(47,49, 51) could be explored. Ultimately, multi-
institutional collaborations and patient-derived
models will be required to establish the clinical
translatability of these findings.

Conclusion

This study provides an exploratory
transcriptomic and systems-level perspective
on miRNA-mediated cisplatin resistance in
GC. Although limited by small sample size,
absence of FDR-significant results, and lack
of experimental validation, the integrative
approach identified candidate miRNAs and
convergent pathways—including nuclear—
cytoplasmic transport, ubiquitin-mediated
proteolysis, and platinum drug resistance—that
may contribute to therapy failure. These results
should be regarded as hypothesis-generating and
require rigorous validation in larger datasets
and experimental studies. If confirmed, the
highlighted miRNAs and pathways may serve
as promising biomarkers and therapeutic targets,
advancing precision oncology approaches to
overcome cisplatin resistance in GC.
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