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Background & Objectives: Cigarette smoke is a major risk factor for non-small cell lung 
cancer (NSCLC) and plays a pivotal role in tumor initiation and angiogenesis. This study 
aimed to elucidate the molecular mechanisms through which cigarette smoke influences 
angiogenesis in NSCLC by integrating transcriptomic data, with a particular emphasis on 
the regulatory role of microRNA-1 (miR-1) and its downstream targets.
Materials & Methods: We analyzed the Gene Expression Omnibus (GEO) dataset 
GSE290190, comprising gene expression profiles from 18 samples with different smoking 
statuses (9 normal and 9 tumor tissues). Differential expression analysis, Gene Set 
Enrichment Analysis (GSEA), Gene Ontology (GO) enrichment, and Protein–Protein 
Interaction (PPI) network analysis were conducted to identify critical genes and signaling 
pathways. Statistical analyses were employed to determine differentially expressed genes 
(DEGs) and to assess their biological relevance.
Results: Differential expression analysis identified 2,449 DEGs between normal and tumor 
tissues, with significant enrichment in angiogenesis, cell cycle regulation, and DNA repair 
pathways. Key angiogenesis-related genes—VEGFC, FGF2, and ANGPT1—were recognized 
as direct targets of miR-1. GSEA and GO analyses revealed marked alterations in biological 
processes such as chromosome segregation, mitotic nuclear division, and extracellular 
matrix organization. PPI network analysis identified E2F7, PLK1, and TOP2A as hub genes, 
suggesting their potential roles as key regulators in cell cycle progression and tumorigenesis.
Conclusion: This study highlights the transcriptomic heterogeneity of NSCLC and 
proposes miR-1 and its downstream targets—VEGFC, FGF2, and ANGPT1—as 
promising biomarkers and therapeutic targets. However, further validation using larger 
datasets and functional assays is essential to confirm these findings and facilitate their 
clinical translation.
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Introduction
Bronchogenic carcinoma, commonly 

known as lung cancer, refers to malignancies 

originating in the lung parenchyma or bronchi. 
It is among the leading causes of cancer-related 
mortality worldwide (1). Paradoxically, lung 
cancer was relatively uncommon in the early 
20th century; however, its incidence has surged 
dramatically in recent decades, primarily due to 
increased cigarette consumption. It is estimated 
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that smoking accounts for approximately 90% 
of lung cancer cases, while exposure to other 
carcinogens, such as asbestos, further elevates 
the risk (2,3). Approximately 80% of lung 
cancers are classified as non-small cell lung 
cancer (NSCLC), which generally exhibits 
slower growth compared to other subtypes. 
Nevertheless, this form of cancer may metastasize 
to distant organs, including the brain and bones, 
before clinical symptoms become evident (4).

Lung cancer staging is most commonly 
conducted using the TNM classification system, 
which evaluates tumor size and local invasion 
(T), lymph node involvement (N), and distant 
metastasis (M). The clinical progression of the 
disease is typically categorized as follows:

1. Localized (Stage I–II): The tumor is 
confined to the lung, with no involvement of 
lymph nodes or distant organs.

2. Regional (Stage III): The malignancy 
has spread to nearby lymph nodes or adjacent 
structures but remains within the thoracic cavity.

3. Distant (Stage IV): Metastases have 
occurred in remote organs such as the brain, 
bones, or liver (5).

Angiogenesis—the formation of new blood 
vessels from pre-existing vasculature—is 
a critical process driven by the metabolic 
demands of both normal and neoplastic tissues. 
In the context of lung cancer, angiogenesis 
facilitates tumor growth and invasion and is 
closely associated with metastasis and immune 
modulation within the tumor microenvironment 
(6). Cigarette smoke has been shown to promote 
tumorigenesis by enhancing cellular proliferation, 
migration, invasion, and angiogenesis (7). 
Vascular endothelial growth factor (VEGF), a key 
mediator of tumor angiogenesis and progression, 
is upregulated in part by the downregulation of 
microRNA-1 (miR-1) in pulmonary endothelial 
cells. MiR-1 has been identified as a prognostic 
marker for NSCLC and may inform therapeutic 
monitoring and patient management strategies 
(8). Furthermore, cigarette smoke has been 

reported to activate the angiogenic switch in lung 
cancer by suppressing miR-1 expression, thereby 
positioning miR-1 as a potential biomarker for 
disease initiation and recurrence (9).

Overexpression of miR-1 has also been 
associated with increased sensitivity to cisplatin 
(DDP) through autophagy-related 3 (ATG3)-
mediated autophagy, thereby enhancing the 
efficacy of chemotherapeutic agents and 
highlighting its potential as a therapeutic target 
(10). The selection of miR-1 as the focal point 
of this study was based on evidence from the 
referenced dataset, which identified cigarette 
smoke-induced degradation of mature miR-1 
as a central regulatory mechanism.

Despite accumulating evidence implicating 
cigarette smoke in NSCLC pathogenesis, the 
precise molecular mechanisms underlying its 
angiogenic effects—particularly those mediated 
by miRNAs—remain inadequately characterized. 
There is a notable paucity of integrative 
transcriptomic studies specifically examining 
the interplay between smoking status and miR-
1 regulation, underscoring a critical gap in 
current knowledge. Elucidating these molecular 
pathways is imperative for the identification of 
early diagnostic biomarkers and the development 
of personalized therapeutic strategies (11).

Materials and Methods
This study employed a multi-step 

methodology encompassing data preprocessing, 
statistical analysis, and visualization. We 
analyzed gene expression alterations in 26,485 
genes across 18 samples derived from the 
publicly accessible GEO dataset GSE290190, 
available at: https://www.ncbi.nlm.nih.gov/geo/
query/acc.cgi?acc=GSE290190. This dataset 
specifically investigates the dysregulation of 
endothelial microRNA-1 (miR-1) in NSCLC 
patients as a consequence of cigarette smoke 
exposure. The characteristics of the analyzed 
samples, including patient smoking status, are 
summarized in Table 1 below.
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All necessary preprocessing and analytical 
procedures were conducted using R software 
(version 4.2.2). The required packages were 
first installed and subsequently loaded. The 
following packages were utilized: “DESeq2” 
(v1.46.0), “ggplot2” (v3.5.1), “EnhancedVolcano” 
(v1.24.0), “pheatmap” (v1.0.12), “dplyr” (v1.1.4), 
“tidyverse” (v2.0.0), “org.Hs.eg.db” (v3.20.0), 
and “STRINGdb” (v2.18.0). These packages 
were installed and loaded via the BiocManager 
package (v1.30.25), which facilitates the 
management of Bioconductor libraries (12–19).

The dataset was then imported into R, and 
analyses were carried out at four hierarchical 
levels, encompassing four distinct sample types. 
Initially, to compare tumor and normal groups, 
samples were categorized into two primary 
groups: Normal (N) and Tumor (T). To assess 
the potential influence of smoking status on the 
observed outcomes, the sample groups were 
further stratified into three subgroups: Normal 
Current Smoker vs. Tumor Current Smoker 
(NC vs. TC), Normal Former Smoker vs. Tumor 
Former Smoker (NF vs. TF), and Normal Never 
Smoker vs. Tumor Never Smoker (NN vs. TN).

Differential Expression Analysis
Differential expression analysis was 

performed by constructing a DESeqDataSet 
object, followed by normalization using the 
median-of-ratios method. This normalization 
approach ensures that observed variations in 
gene expression are attributable to underlying 
biological factors rather than technical artifacts. 
A properly structured conditions vector was 
created, and differential expression was assessed 
using the DESeq2 package, enabling systematic 
comparisons across sample groups (20).

Following this, a filtering step was applied 
to retain only statistically significant results, 
specifically genes with an adjusted p-value (padj) 
<0.05. The resulting output included critical 
metrics such as baseMean, log2FoldChange, 
lfcSE, stat, p-value, and padj, each providing 
insight into expression magnitude and statistical 
significance.

To visualize differentially expressed 
genes, two graphical representations were 
employed: the volcano plot and the heatmap. 
The volcano plot incorporated all genes—
regardless of significance level—and displayed 

Table 1. Characteristics of Samples and Patients
Sample ID Patient ID Tissue Type Smoking Status Sample Type

GSM8808012 387 Normal Tissue Former Smoker NF
GSM8808013 387 Tumor Tissue Former Smoker TF
GSM8808014 395 Normal Tissue Former Smoker NF
GSM8808015 395 Tumor Tissue Former Smoker TF
GSM8808016 397 Normal Tissue Current Smoker NC
GSM8808017 397 Tumor Tissue Current Smoker TC
GSM8808018 406 Normal Tissue Current Smoker NC
GSM8808019 406 Tumor Tissue Current Smoker TC
GSM8808020 411 Normal Tissue Never Smoker NN
GSM8808021 411 Tumor Tissue Never Smoker TN
GSM8808022 417 Normal Tissue Former Smoker NF
GSM8808023 417 Tumor Tissue Former Smoker TF
GSM8808024 452 Normal Tissue Current Smoker NC
GSM8808025 452 Tumor Tissue Current Smoker TC
GSM8808026 529 Normal Tissue Never Smoker NN
GSM8808027 529 Tumor Tissue Never Smoker TN
GSM8808028 532 Normal Tissue Never Smoker NN
GSM8808029 532 Tumor Tissue Never Smoker TN
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log2FoldChange on the x-axis and –log10(p-
value) on the y-axis. A p-value cutoff of 0.05 
and a fold-change threshold of 1 were applied 
(pCutoff = 0.05; FCcutoff = 1) (21). For the 
heatmap, only significantly differentially 
expressed genes (padj < 0.05) were considered. 
The dataset was refined to include the top 50 
most significantly altered genes (i.e., those with 
the lowest padj values) to enhance interpretability 
and minimize overplotting (top_genes <- 
rownames(res[order(res$padj),]) [1:50]).

Additionally, Principal Component Analysis 
(PCA) was conducted using variance-stabilized 
transformed data (vst(dds)) to assess global 
expression patterns across samples. This analysis 
was stratified by the “condition” variable, allowing 
for clear visualization of sample clustering. 
The percentage of variance explained by each 
principal component (percentVar) was computed 
to elucidate the primary axes of variation in the 
dataset. This technique provides insight into the 
overarching gene expression structure under 
different experimental conditions (22).
Gene Set Enrichment Analysis (GSEA)

To elucidate the biological significance of the 
differentially expressed genes (DEGs), Gene Set 
Enrichment Analysis (GSEA) was performed 
using the clusterProfiler package (v4.14.4) 
(23). The gseGO function was employed 
to map Ensembl gene identifiers to Gene 
Ontology (GO) terms, utilizing the org.Hs.eg.
db annotation database for Homo sapiens (24). 
The minimum gene set size was set to 1, and a 
p-value threshold of 0.05 was used to identify 
significantly enriched terms. A dot plot was 
generated to visually summarize enriched GO 
categories. Furthermore, gene name-to-Ensembl 
ID conversion was conducted using the biomaRt 
package (v2.62.1).
Functional Annotation and Pathway Analysis

To investigate the functional roles of DEGs, 
we initiated the analysis by loading the org.Hs.eg.
db package (v3.20.0). Enrichment analysis was 
then carried out using the enrichGO function, 

with p-value and q-value thresholds both set 
at 0.05. The corresponding enrichment results 
were visualized using the dotplot function (25). 
Gene names served as the input for this analysis, 
with Ensembl IDs converted via the biomaRt 
package.

In parallel, KEGG pathway enrichment 
analysis was conducted using the enrichKEGG 
function, specifying Homo sapiens (organism 
code: “hsa”). This analysis incorporated 
significantly expressed genes (padj < 0.05) and 
applied consistent p-value and q-value cutoffs 
of 0.05 (26). Resulting pathways were similarly 
visualized using dot plots generated via the 
clusterProfiler package. The conversion from 
gene symbols to Entrez IDs was accomplished 
using the mapIds function in conjunction 
with the org.Hs.eg.db database. Collectively, 
this rigorous multi-tiered approach enabled 
the elucidation of key biological processes 
and pathways associated with the observed 
transcriptional changes.
Protein-Protein Interaction (PPI) Network 
Analysis

To identify functional interactions among 
proteins encoded by DEGs and to detect potential 
hub genes, a Protein–Protein Interaction (PPI) 
network analysis was undertaken using the 
STRINGdb package (v2.18.0), configured for 
Homo sapiens (NCBI taxonomy ID: 9606). 
This package was installed and managed 
through BiocManager. A STRINGdb object was 
instantiated with a confidence score threshold 
of 400, thereby focusing on high-confidence 
interactions.

The analysis utilized Entrez IDs corresponding 
to the top 100 most significant genes, ranked 
by lowest adjusted p-values. Genes lacking 
interactions or displaying minimal connectivity 
were excluded from further visualization. The 
final PPI network was subsequently visualized 
and archived, providing a comprehensive 
overview of interaction dynamics among key 
DEGs (27).
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Results
In the comparison between normal (N) and 

tumor (T) samples (N vs. T), 2,449 DEGs were 
detected, of which 1,407 were up-regulated and 
1,044 were down-regulated. The NF vs. TF 
contrast yielded 697 DEGs—314 up-regulated 
and 383 down-regulated—whereas the NC vs. 
TC analysis revealed 172 DEGs, 97 up-regulated 
and 75 down-regulated. Finally, 94 DEGs (25 
up-regulated and 69 down-regulated) were 
identified in the NN vs. TN comparison (Table 2;  
Figures 1).

GSEA demonstrated significant enrichment 
of multiple biological processes between normal 
and tumor samples, with the most pronounced 
changes (expressed as log₂-fold change) depicted 
in Figure 2. A comparable enrichment pattern 
was observed for the NF vs. TF comparison.

By contrast, the NC vs. TC analysis 
highlighted processes related to DNA-templated 
DNA replication, mitotic sister-chromatid 
segregation, cell-cycle checkpoint signalling, 
keratinocyte differentiation, mitotic nuclear 
division, nuclear chromosome segregation, 
regulation of chromosome segregation, and skin 
development. In the NN vs. TN comparison, 
processes associated with axoneme assembly, 
cilium-dependent motility, microtubule-bundle 
formation, and multiple chromosome-segregation 
terms were significantly enriched (Figure 2).

GO enrichment analysis of the N vs. T dataset 
returned 718 significantly enriched GO terms, 
many of which relate to mitotic events. Notably, 
“mitotic nuclear division” (GO:0140014), 
“chromosome segregation” (GO:0007059), 
“DNA replication” (GO:0006260; GO:0006261), 

Table 2. Filtering results for each comparison’s 10 most important genes and their numerical values
Sample 

Type
Genes with Highest 

log2FoldChange
Genes with Lowest 

log2FoldChange Genes with Lowest padj

T vs N

CST4 (7.79), LINC01249 (7.53), 
KRT75 (7.14), PNPLA5 (7.11), 
CST1 (7.02), LOC101927136 

(6.77), SPINK1 (6.42), SPRR3 
(6.11), ACTL8 (6.10)

HAS1 (-6.33), MIR663A 
(-5.92), SLC6A4 (-5.23), CSF3 
(-5.19), IL13 (-5.14), LY6G6E 

(-5.09), LOC101927410 (-4.99), 
LINC01069 (-4.98), MT1A (-4.85)

ANKRD1 (3.36E-13), COL10A1 
(4.37E-11), BMPER (1.45E-10), 

FCN3 (2.24E-10), RTKN2 (2.24E-
10), CD36 (8.12E-10), SLITRK2 

(1.54E-09), CST1 (1.82E-09), 
CST4 (1.28E-08)

NF vs 
TF

FAM138A (22.46), FAM138C 
(22.46), FAM138F (22.46), 

LINC00901 (21.03), DGKK (7.31), 
MOGAT1 (7.27), KCNJ3 (6.95), 

SLC6A4 (6.57), HAS1 (6.36)

RBM46 (-24.67), HOXC10 
(-24.60), LINC01249 (-24.14), 
HOXD11 (-23.86), GABRG2 

(-23.38), PRDM9 (-23.14), SALL1 
(-22.78), MAGEB10 (-22.66), 

HOXA13 (-22.58)

FAM138A (1.42894E-25), 
FAM138C (1.42894E-25), 

FAM138F (1.42894E-25), RBM46 
(4.88598E-22), SALL1 (2.28492E-

19), MAGEB10 (5.56366E-14), 
LINC01193 (5.90815E-12), 

HOXC10 (8.04933E-12), SLITRK1 
(3.05419E-11)

NC vs 
TC

PRDM9 (19.40), TFF1 (19.28), 
MT1A (9.58), ZFP42 (7.08), 

PLA2G2A (6.79), GRID2 (6.61), 
DEFA1B (6.14), DEFA1 (6.13), 

CD300LG (6.12)

CST4 (-7.50), SOX2 (-6.55), 
ANKRD34B (-6.20), SLC38A11 
(-6.17), CNTNAP2 (-6.16), CST1 
(-6.16), FOXE1 (-6.09), UGT1A7 

(-6.01), UGT1A9 (-5.91)

SOX7 (9.14E-05), PDK4 (9.14E-
05), CA4 (2.06E-04), CD36 

(4.91E-04), AKAP2 (5.26E-04), 
LOC101928370 (5.26E-04), MT1A 

(5.26E-04), PALM2-AKAP2 
(5.62E-04), S1PR1 (6.77E-04)

NN vs 
TN

LINC00383 (18.38), PSG4 (18.10), 
LOC101928272 (16.48), KLK8 
(16.08), PRR9 (15.17), HAS1 

(6.88), SEC14L3 (6.44), C11orf88 
(6.34), HSD17B13 (4.67)

SALL1 (-23.21), OPRD1 (-22.60), 
HOXB13 (-21.23), LINC01249 
(-20.35), MAGEA9B (-16.70), 

MAGEA9 (-16.70), CST4 (-8.32), 
RTBDN (-8.17), KIF1A (-7.68)

SALL1 (1.63E-19), LOC101928272 
(1.52E-04), KIF1A (2.27E-04), 
MMP11 (2.27E-04), ABCA12 

(1.46E-03), DNAJC22 (2.43E-03), 
TMEM63C (2.43E-03), RNF144A-

AS1 (2.43E-03), COL22A1 
(2.86E-03)
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Figure 1. A: Principal Component Analysis (PCA) of Gene Expression Profiles. B: Heatmap of Differentially 
Expressed Genes (DEGs). Rows: Samples (N or T). Columns: Genes. Color key: Red = upregulated expression;  

Blue = downregulated expression

Figure 2. Gene Set Enrichment Analysis (GSEA) Normal vs. Tumor Samples (N vs. T)
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and “regulation of cell cycle” (GO:0045786; 
GO:1901990) exhibited both low adjusted 
p-values and high gene ratios, underscoring the 
pivotal contribution of DEGs to cell-division 
regulation (Figure 3).

For the NF vs. TF contrast, GO terms 
describing chromosome segregation, homophilic 
cell adhesion, and the orchestration of nuclear 
and mitotic divisions were over-represented. 
The NC vs. TC comparison, however, was 
enriched for processes involving muscle-system 
development, axonogenesis, epithelial-cell 
proliferation, renal morphogenesis, ion-transport 
regulation, and amoeboid-type cell migration. 
In the NN vs. TN dataset, extracellular-matrix 
organisation and skeletal morphogenesis 
predominated, together with pathways that 
positively regulate angiogenesis and osteoblast 
proliferation. KEGG pathway enrichment analysis 
corroborated these findings, revealing robust 
pathway activation in the N vs. T comparison 
(Figure 4). Cell-cycle pathways predominated 
in the NF vs. TF group; the NC vs. TC contrast 
featured signalling modules such as cGMP–PKG, 
adrenergic signalling in cardiomyocytes, fatty-acid 
β-oxidation, vascular smooth-muscle contraction, 
salivary secretion, pyruvate metabolism, regulation 

of lipolysis in adipocytes, dilated cardiomyopathy, 
and fatty-acid metabolism; and the NN vs. TN 
analysis isolated pathways related to protein 
digestion and absorption (Figure 4).

To investigate the relationship among DEGs 
and to identify hub genes, we employed the 
STRING online database to construct the 
protein–protein interaction (PPI) network. In this 
network, each node represents a gene, whereas 
edges indicate predicted or known interactions 
(Figure 5).

Several key genes exhibiting significant 
interaction patterns in the comparison between 
normal (N) and tumor (T) samples were 
identified, including E2F Transcription Factor 
7 (E2F7), Ubiquitin-Conjugating Enzyme E2 T 
(UBE2T), Kinesin Family Member 14 (KIF14), 
Centromere Protein F (CENPF), Polo-Like 
Kinase 1 (PLK1), Forkhead Box M1 (FOXM1), 
Topoisomerase (DNA) II Alpha (TOP2A), 
Ubiquitin-Conjugating Enzyme E2 C (UBE2C), 
Cell Division Cycle Associated 8 (CDCA8), 
Baculoviral IAP Repeat Containing 5 (BIRC5), 
Cell Division Cycle Associated 2 (CDCA2), Cell 
Division Cycle Associated 3 (CDCA3), Abnormal 
Spindle Microtubule Assembly (ASPM), and 
Holliday Junction Recognition Protein (HJURP). 

Figure 3. Gene Ontology (GO) Enrichment Analysis for Normal vs. Tumor Samples (N vs. T)
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Figure 4. KEGG Pathway Analysis for Normal vs. Tumor samples (N vs. T)

Figure 5. Protein-Protein Interaction (PPI) Networks of Differentially Expressed Genes (DEGs) in Different Sample Comparisons. 
A: Normal vs. Tumor (N vs. T) B: Normal Current Smoker vs. Tumor Current Smoker (NC vs. TC) C: Normal Former Smoker 

vs. Tumor Former Smoker (NF vs. TF) D: Normal Never Smoker vs. Tumor Never Smoker (NN vs. TN)
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Selection of the top 50 genes was based on 
adjusted p-values (padj), with a confidence 
score threshold of 400 applied to ensure high 
reliability in the predicted interactions.

Discussion
The principal objective of this study was 

to elucidate the molecular pathways through 
which cigarette smoke influences angiogenesis 
in NSCLC, utilizing gene expression profiling. 
While prior research has revealed mechanisms 
including the upregulation of VEGF, activation 
of HIF-1α, and induction of inflammatory 
cytokines (28, 29), our focus on miR-1 was driven 
by both a biologically grounded hypothesis and 
the foundational design of the selected dataset. 
Differential gene expression analysis between 
normal (N) and tumor (T) tissues identified 
2,449 DEGs, several of which play pivotal roles 
in angiogenesis.

Notably, VEGFC—a critical regulator 
of angiogenesis and lymphangiogenesis—is 
significantly upregulated in NSCLC (30, 31) and 
is likely targeted by miR-1, thereby promoting 
neovascularization. Similarly, Fibroblast 
Growth Factor 2 (FGF2), which enhances 
endothelial cell proliferation and migration (32), 
and EPHB2, a gene implicated in endothelial 
cell migration and vascular morphogenesis 
(33), also represent probable targets. 
Transforming Growth Factor Beta Receptor 3 
(TGFBR3), which modulates TGF-β signaling, 
is likewise involved in angiogenesis (34).

SPP1 (Osteopontin), a secreted phosphoprotein 
associated with both tumor progression and 
angiogenesis (35), appears to be under miR-1 
regulation as well. Additionally, Angiopoietin 1 
(ANGPT1), a gene crucial for vascular stability 
and angiogenic signaling (36), and miR-1–
regulated genes such as EPHA10 and Fatty 
Acid Binding Protein 3 (FABP3), involved in 
Eph receptor signaling and lipid metabolism 
respectively (37, 38), further underscore the 
breadth of miR-1’s regulatory influence.

In summary, our findings highlight miR-1 as 
a key regulator of angiogenesis-related genes in 
NSCLC in response to cigarette smoke exposure.

Comparison of the NF vs. TF samples 
revealed 697 DEGs, among which genes such as 
MET, EPAS1, FLT1, TEK, and ANGPT1 showed 
marked expression differences.

These genes are well-established contributors 
to angiogenesis and tumor progression (39–41), 
and likely targets of miR-1, which has been reported 
to function as a tumor suppressor in NSCLC (42). 
In the NC vs. TC comparison, which yielded 
172 DEGs, angiogenesis-related genes such as 
FGF10 and APLN were also significantly altered 
(43, 44), further supporting miR-1’s inhibitory 
role in vascular development.

The NN vs. TN comparison identified 94 
DEGs, including COL1A1, COL3A1, and BMPER, 
all of which are associated with extracellular 
matrix remodeling and angiogenesis (45). 
Once again, these genes represent plausible 
miR-1 targets, underscoring its anti-angiogenic 
function via gene repression.

GSEA revealed that the N vs. T comparison 
exhibited significant enrichment in biological 
processes related to chromosome segregation 
and keratinization, suggesting widespread 
alterations in cell cycle regulation and structural 
integrity in NSCLC. Importantly, GSEA 
outcomes varied across comparisons (NF vs. 
TF, NC vs. TC, and NN vs. TN), reflecting 
the intrinsic heterogeneity of tumor biology 
and emphasizing that results derived from one 
tissue context cannot be extrapolated to another 
without careful consideration.

Consistent with GSEA, GO enrichment 
analysis of the N vs. T dataset revealed significant 
enrichment in mitosis- and cell cycle–related 
terms, including “mitotic nuclear division” and 
“chromosome segregation.”

These findings, illustrated by high Gene 
Ratios and low adjusted p-values in Figure 4, 
highlight the functional relevance of the DEGs 
identified, suggesting their involvement in 
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maintaining genomic stability and promoting 
uncontrolled proliferation in NSCLC.

KEGG pathway enrichment analysis further 
supported these findings, identifying cell cycle 
and DNA replication pathways as significantly 
dysregulated. Of particular interest is the 
enrichment of the Fanconi anemia pathway, 
implicating defective DNA repair in NSCLC 
tumorigenesis—given that dysfunction in 
the FA/BRCA pathway underpins genomic 
instability and impaired DNA damage response 
(46). Differences in KEGG enrichment patterns 
across sample comparisons reflect the diverse 
molecular landscapes characteristic of lung 
tumors.

The PPI network derived from N vs. T DEGs 
revealed robust interactions among several hub 
genes. Proteins such as E2F7, UBE2T, and 
PLK1 were found to play central roles in cell 
cycle regulation and the promotion of cellular 
proliferation (47–49). Their upregulation in 
NSCLC suggests potential utility as diagnostic 
biomarkers or therapeutic targets. A stringent 
interaction confidence score of ≥400 was applied 
to ensure the reliability of these associations. 
Notably, interactions among genes such as 
FOXM1, TOP2A, and BIRC5 suggest the existence 
of a tightly coordinated network that facilitates 
tumor growth and progression. Cancer cells 
exhibit a unique capacity to induce angiogenesis, 
thereby securing an increased supply of oxygen 
and nutrients, primarily through the secretion of 
vascular endothelial growth factor (VEGF). The 
DEGs identified in this study likely contribute to 
this pro-angiogenic phenotype by driving both 
cellular proliferation and genomic instability.

For instance, rapid tumor growth and elevated 
cell density often induce hypoxic conditions, 
which in turn activate VEGF and other 
angiogenic mediators (50).

Nevertheless, this study is not without 
limitations, including a relatively small sample 
size and reliance on a single dataset. Several 
other studies have explored the molecular 

consequences of cigarette smoke exposure in 
lung cancer. For example, de Biase et al. (2024) 
analyzed transcriptomic data from nasal and 
bronchial epithelial samples to identify DEGs and 
pathway-level alterations linked to lung cancer 
risk. While their study utilized computational 
modeling and transcriptional regulatory 
networks, our work emphasized GSEA, GO, 
and PPI network analyses (51). Takyar et al. 
also investigated the effects of cigarette smoke 
on endothelial cell function, highlighting miR-1 
degradation via the VEGF–PI3K–AKT signaling 
axis and exploring both cellular and clinical 
mechanisms in depth (52). Additional studies have 
corroborated our findings, implicating smoking 
in significant transcriptional reprogramming 
associated with lung carcinogenesis. One such 
investigation underscored the role of cell cycle 
genes, including E2F and PLK1, and DNA repair 
pathways, using data from TCGA and GEO, 
and further examined sex-based differences 
in epithelial-mesenchymal transition (EMT)-
related gene expression (53).

The present study aligns with the findings of 
Beane et al., who employed RNA sequencing 
to examine gene expression alterations induced 
by smoking in the airway epithelium. Their 
research demonstrated that smoking activates 
pathways involved in xenobiotic metabolism, 
oxidoreductase activity, and inflammatory 
responses, including chemotaxis signaling and 
cytokine receptor pathways, in both smokers 
and lung cancer patients. By contrast, our 
study specifically focused on the role of miR-1 
and its downstream targets—VEGFC, FGF2, 
and ANGPT1. We demonstrated that smoking 
not only stimulates canonical inflammatory 
pathways but also exerts a profound effect 
on angiogenic signaling by downregulating 
miR-1 expression (54). In summary, prior 
research, including the review conducted by 
Prtty et al., underscores the potential of gene 
expression profiling in NSCLC as a platform 
for identifying diagnostic biomarkers and 
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therapeutic targets. Their work emphasized the 
utility of transcriptomic data in subclassifying 
tumors, predicting clinical outcomes, and 
guiding personalized treatment strategies (55). 
Building upon these foundational insights, our 
study contributes functional evidence regarding 
the impact of cigarette smoke on the NSCLC 
transcriptome, thereby uncovering novel avenues 
for therapeutic intervention (Figure 6).

To enhance the reliability of future 
investigations, it is imperative to incorporate 
larger sample sizes and a broader range of 
datasets. Furthermore, experimental validation 
through functional assays is essential to 
substantiate the bioinformatic predictions. It is 
important to note that although the identified 
DEGs offer valuable insights, they do not fully 
elucidate the precise molecular mechanisms 
underlying tumorigenesis. Thus, continued 
research in this domain remains critically 
necessary.

Conclusion
This study aimed to elucidate the impact of 

cigarette smoke on angiogenesis in NSCLC. We 

systematically filtered and analyzed key genes 
regulated by miR-1 among DEGs. Transcriptomic 
profiling revealed DEGs associated with 
angiogenesis, cell cycle progression, and DNA 
repair, thereby highlighting the molecular 
heterogeneity characteristic of NSCLC. 
We identified several pivotal genes and hub 
regulators—such as E2F7 and PLK1—that may 
serve as potential biomarkers for the diagnosis 
and targeted treatment of NSCLC. Based on 
these findings, we propose that therapeutic 
inhibition of miR-1 and its downstream 
effectors could represent a promising strategy 
for managing various cancers, particularly 
NSCLC. Nonetheless, in order to strengthen 
the robustness and clinical relevance of these 
observations, subsequent studies should adopt 
a more comprehensive approach—utilizing 
larger datasets and incorporating experimental 
validation—to further explore the therapeutic 
and diagnostic implications of miR-1-mediated 
regulation.
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