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Background & Objectives: Parkinson’s disease (PD) is a neurological disorder 
characterized by the progressive loss of brain cells, significantly affecting body movement. 
Early diagnosis not only reduces healthcare costs but also helps prevent adverse outcomes 
for patients. Researchers are increasingly utilizing intelligent machine learning methods 
to enhance the accuracy and efficiency of PD diagnosis.
Materials & Methods: Although several data mining techniques have achieved reasonable 
accuracy in diagnosing PD, they often encounter trade-offs between accuracy and 
execution speed and are sensitive to parameter settings and data outliers. The k-Nearest 
Neighbors (KNN) algorithm, for example, is valued for its simplicity and speed but 
suffers from limitations such as sensitivity to neighborhood size and reliance on majority 
voting, both of which can degrade performance. To address these challenges, this study 
employs an advanced variant of the KNN algorithm, referred to as Multiple Local Mean 
Vector-based Nearest Neighbor Classification (MLMV-NNC), alongside a neural network 
classifier trained using Bayesian backpropagation. The MLMV-NNC method enhances 
traditional KNN by incorporating multiple local mean vectors, thereby reducing the 
influence of outliers and improving classification robustness.
Results: The proposed diagnostic approach demonstrates superior performance in 
detecting PD. Specifically, the model achieves an accuracy of 99%, precision of 96%, 
specificity of 98.6%, and sensitivity of 100%. Furthermore, a comparative analysis with 
traditional methods, including Support Vector Machines (SVM) and Artificial Neural 
Networks (ANN), highlights the superior performance of the proposed method.
Conclusion: The findings indicate that the combination of MLMV-NNC and a neural 
network trained via Bayesian backpropagation constitutes a highly effective approach 
for diagnosing PD. This method not only improves accuracy but also mitigates common 
challenges such as sensitivity to parameter settings and data outliers, offering a promising 
alternative to conventional classification techniques.
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Introduction
Parkinson’s Disease (PD) is a progressive 

neurological disorder that affects approximately 

1% of the population over the age of 55, with its 
prevalence increasing significantly with age (1). 
The disease is characterized by the degeneration of 
dopaminergic neurons in the substantia nigra pars 
compacta (SNc) and the presence of Lewy bodies, 
which are intracellular inclusions primarily 
composed of α-synuclein and ubiquitin (2).  
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This neuronal loss leads to a depletion of 
dopamine in the striatum, which disrupts both 
motor and non-motor functions. Clinically, 
PD manifests with symptoms such as tremors, 
bradykinesia (slowness of movement), rigidity, 
and postural instability, as well as non-motor 
symptoms including sleep disturbances, speech 
variability, and loss of smell (3). While the exact 
mechanisms underlying PD remain incompletely 
understood, oxidative stress, mitochondrial 
dysfunction, and neuroinflammation are 
widely recognized as key contributors to 
neurodegeneration (4). Early diagnosis is critical, 
as PD is irreversible and progressively worsens, 
often leading to severe disability and a reduced 
quality of life (5).

In recent years, machine learning (ML) 
and artificial intelligence (AI) techniques have 
emerged as promising tools for enhancing PD 
diagnosis (6). Traditional diagnostic methods, 
which rely on clinical observations and 
subjective assessments, can be enhanced by 
integrating ML algorithms capable of analyzing 
complex datasets. For instance, gait analysis, 
a non-invasive and cost-effective approach, 
has shown potential in detecting PD through 
changes in walking patterns (7). Similarly, 
ML models can process diverse data types, 
such as speech recordings, MRI images, and 
wearable sensor data, to detect early signs of 
the disease with higher accuracy (8). However, 
existing methods face significant challenges, 
including high computational costs, dependency 
on large datasets, and limitations in managing 
multidimensional data structures (9).

Techniques such as regression, k-Nearest 
Neighbor (k-NN), and Artificial Neural 
Networks (ANNs) often struggle with issues 
such as early convergence, local minima (10), 
and sensitivity to parameter settings (11). Recent 
advancements in AI have introduced more 
sophisticated approaches, such as Deep Neural 
Networks (DNNs) and Convolutional Neural 
Networks (CNNs), which offer higher accuracy 

in PD diagnosis (12). For example, Abumalloh 
et al. (13) demonstrated that deep learning (DL) 
methods outperform traditional ML approaches 
in identifying PD, particularly when analyzing 
large datasets. Their bibliometric analysis 
highlighted the growing global interest in DL-
based diagnostic methods, though they identified 
a research gap related to incremental learning 
techniques for big data analysis. Similarly, Sigcha 
et al. (14) reviewed the use of wearable devices 
combined with DL algorithms for continuous 
monitoring of PD symptoms. Their study, which 
analyzed 69 research papers, found that inertial 
sensors and CNNs were the most commonly 
used tools, with motor symptoms being more 
frequently studied than non-motor symptoms. 
Despite the potential of these technologies, 
challenges such as data variability and the need 
for standardized validation methods remain.

Tanveer et al. (15) conducted a comprehensive 
review of DNNs for PD diagnosis, noting their 
high accuracy but also their computational 
expense and hardware requirements. They 
emphasized the need for cost-effective solutions to 
facilitate the widespread clinical adoption of these 
technologies. Vyas et al. (16) proposed a 3D CNN 
model for analyzing brain MRI images, achieving 
an accuracy of 88.9%, which outperformed their 
2D CNN model. Their approach utilized advanced 
preprocessing techniques, such as bias field 
correction and Z-score normalization, to enhance 
feature extraction from MRI data. Rajalaxmi et 
al. (17) introduced an improved binary grey wolf 
optimizer (BIGWO) for feature selection in PD 
diagnosis, demonstrating enhanced classification 
performance through adaptive k-NN (AkNN). 
Their work highlighted the importance 
of optimizing feature selection to boost  
diagnostic accuracy.

Despite these advancements, challenges such 
as computational inefficiency, data dependency, 
and the need for costly hardware persist. To 
address these limitations, this study proposes 
a novel hybrid approach that combines the 
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strengths of Multiple Local Mean Vector-
based k-Nearest Neighbor (MLM-KHNN) 
and neural networks. MLM-KHNN improves 
upon traditional k-NN by addressing issues 
associated with feature weighting and majority 
voting, while neural networks enhance feature 
processing and relationship mapping. This hybrid 
model aims to optimize accuracy, precision, and 
computational efficiency, offering a standalone, 
offline diagnostic tool for early PD detection. By 
integrating the advantages of both methods, this 
approach seeks to overcome the limitations of 
existing techniques and provide a more reliable, 
cost-effective solution for clinical applications.

Methods and Materials
In this research, we examine a method for 

diagnosing PD using classification techniques 
such as ANN and the Multiple Local Mean 
(MLM)-KHNN algorithm. To apply data 
mining in diagnostic areas like disease detection, 
machine learning algorithms must be utilized 
to process information stored in databases. 
Various machine learning methods exist in this 
domain, and in this study, due to the criteria of 
speed, simplicity, and quick execution time, we 
focused on approaches that are both efficient and 
computationally feasible.

One of the most prominent, simple, and fast 
machine learning methods in data mining is 
KNN and the ANN approach (15). Despite its 
simplicity and speed, the KNN method faces 
significant challenges, such as dependence on 
majority voting, the difficulty of selecting an 
appropriate value for the neighborhood size 
parameter (k) (which requires extensive trial 
and error), and the equal treatment of all data 
points, regardless of their proximity to the query 
point. To address these limitations, in 2017, 
Zebin Pan et al. (2) introduced an advanced 
version of this algorithm, which, through 
multi-neighborhood selection and averaging 
multiple vectors, mitigates these challenges. This 
version not only retains simplicity and speed 

but also demonstrates enhanced performance 
in appropriately handling data with both linear 
and non-linear features.

Consequently, this research integrates the 
advanced version of KNN with a multilayer 
perceptron neural network (ANN) equipped 
with a Bayesian backpropagation algorithm for 
Parkinson’s disease diagnosis. Machine learning 
methods, as intelligent data-driven approaches, 
require the division of data into two subsets: 
training and testing. In the training phase, both 
data features and decision-making features (class 
labels) are considered, while in the testing phase, 
only the data features are included. Classification 
methods are trained using the full information 
of the training data, including both data 
features and decision-making features, so that 
the classifier can evolve into a well-informed 
model. The testing data are then processed by the 
classifiers, and predictions are made regarding 
class labels (indicating the presence or absence of 
the disease). The predicted labels are compared 
with the actual labels to calculate classification 
errors and overall accuracy.

According to Figure 1, the detailed steps of the 
classification method for diagnosing Parkinson’s 
disease are described as follows:

Data: he Parkinson’s disease database, 
extracted from the UCI repository, was used. 
The dataset was split into training and testing 
sets in a 70:30 ratio to initiate the proposed 
diagnostic method.

Training the Classifier: The ensemble 
classifier based on ANN and MLM-KHNN 
was trained using the training data, enabling 
the classifier to develop into a well-informed 
model capable of diagnosing the disease when 
presented with data features. The ANN and 
MLM-KHNN classifiers were combined to 
optimize the diagnosis of Parkinson’s disease. 
The relevant data were fed into the proposed 
combined method for the learning process. 
The MLM-KHNN method (multi-local mean 
nearest neighbors) was used for classification. 
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To optimize the learning process, the output of 
the MLM-KHNN method was fed into a neural 
network with 20 hidden layers. While this number 
of layers facilitates deeper data processing, 
careful tuning of neural network parameters 
was performed to minimize overfitting and 
maximize computational efficiency.

Output Section: The final classification of 
the data was performed based on two categories: 
healthy individuals and Parkinson’s patients.

The detailed workings of each classifier 
(MLM-KHNN and ANN) for Parkinson’s disease 
diagnosis are explained as follows. Each of these 
classification methods was used to classify high-
dimensional feature vectors due to their greater 
accuracy and precision in handling such data. The 
primary concept of the MLM-KHNN classifier 
is derived from the classification of classes by 
training feature vectors from various database 
sets. The extracted feature vectors were used as 
input to the classifier, and the data were randomly 
divided into two parts: training and testing. The 
training set was used to train the classifier, while 
the testing set was used to validate its performance. 
Feature computation and classification using 
MLM-KHNN were conducted in MATLAB. 
The k-fold cross-validation method was used 
to divide the dataset into training and testing 
sections. There are different methods for splitting 
the dataset, such as k-fold, 70:30, or 90:10 splits. 
In this study, the k-fold method was used for the 
MLM-KHNN algorithm. Evaluation is a tool for 
assessing the research method by dividing the 
dataset into training and testing sections, where 
the entire dataset is split into (k) parts. Each time, 
one of the (k) parts (a fold) is considered the test 
set, while the remaining (k-1) parts are used as the 

training set. In cross-validation, the data samples 
are first divided into (k) parts, ensuring that the 
volume of these parts is approximately equal 
whenever possible. Among these (k) parts, one 
is set aside as the test set, while the remaining 
(k-1) parts are used as the training set. Using this 
model, predictions are made on the test set data, 
and the model’s accuracy is calculated using an 
appropriate loss function. Then, another of the 
(k) parts is chosen as the test set, and the process 
is repeated. Consequently, every data sample in 
the original set is predicted once.
Dataset

In this research, the Parkinson’s disease 
database available on the UCI website was used 
to test the proposed data mining method based 
on the MLM-KHNN+ANN ensemble classifier 
for the diagnosis of Parkinson’s disease. The 
database contains 22 data features (independent 
variables) and one output (dependent variable) 
named “Status,” with two values: “disease” (1) 
and “healthy” (0). The details of the features and 
output of the database are provided in Table 1.  
This dataset is derived from a wide range of 
biomedical acoustic measurements taken 
from 195 individuals, including 147 patients 
with Parkinson’s disease (PD) and 48 healthy 
individuals. Each column in the table represents 
a specific acoustic measurement, while each row 
corresponds to one of the 197 recorded sounds 
from these individuals. The data labels are 
assigned as 1 for PD patients and 0 for healthy 
individuals (1–5, 13–15).

Results
Simulation Environment and Parameters

The proposed method was implemented using 

Figure 1. The Group Classification Process
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MATLAB R2024b and executed on a system with 
16 GB of RAM, a 7-core processor, and Windows 
10 (64-bit). The ANN classification algorithm was 
developed using MATLAB’s Neural Network 
Toolbox, with the relevant neural network codes 
generated and customized according to the 
study’s requirements. The key parameter settings 
for the implemented classification methods are 
summarized in Table 2.

Table 2 outlines the essential configurations 
used for training the models, including the 10-
fold cross-validation approach (k = 10) for MLM-
KHNN and Bayesian backpropagation training 

for ANN. Notably, the neural network was 
structured with 20 hidden layers and trained over 
1000 epochs to ensure comprehensive learning. 
While this deep architecture enhances accuracy, 
it also necessitates significant computational 
resources, highlighting a key challenge for real-
time applications.
Evaluation Metrics

To evaluate the performance of the proposed 
MLM-KHNN+ANN model, various statistical 
metrics were employed, including accuracy, 
precision, specificity, sensitivity, F1-score, and 
AUC-ROC. The formulas for calculating these 

Table 1. Parkinson’s disease Database from UCI
ParameterVariable nameNumber

Average audio frequencyMDVP: Fo(Hz)1
Maximum audio frequencyMDVP: Fhi(Hz)2
Audio frequency minimumMDVP: Flo(Hz)3

Audio frequency changes in percentageMDVP: Jitter(%)4
Audio frequency changes in microsecondMDVP: Jitter(Abs)5

Audio frequency changes of relative amplitudeMDVP: RAP6
Audio frequency changesMDVP: PPQ7
Audio frequency changesJitter:DDP8

Features domain changes

MDVP: shimmer9
MDVP: shimmer(Db)10

Shimmer: APQ311
Shimmer: APQ512
Shimmer: APQ13
Shimmer: DDA14

Quality of presence of noiseNHR15
Noise qualityHNR16

Detrended DFA volatility analysisDFA17
Entropy density measurementRPDE18

Nonlinear measurement of frequency Spread119
Spread220

Correlation rateD221
Non-linearity of PPE frequencyPPE22

A value of 0 indicates a healthy person and a value of 1 
indicates a person with Parkinson’s diseaseStatus23

Abbreviations: MDVP: Multi-Dimensional Voice Program, Fo(Hz): Fundamental Frequency, Fhi(Hz): Maximum 
Frequency, Flo(Hz): Minimum Frequency, Jitter(%): Jitter (percent), Jitter(Abs): Jitter (absolute), RAP: Relative Amplitude 
Perturbation, PPQ: Pitch Period Perturbation, DDP: Differential Deviation of Pitch, Shimmer: Shimmer, Shimmer(Db): 
Shimmer (decibels), APQ3: Amplitude Perturbation Quotient (3rd order), APQ5: Amplitude Perturbation Quotient (5th 
order), APQ: Amplitude Perturbation Quotient, DDA: Differential Deviation of Amplitude, NHR: Noise-to-Harmonics 
Ratio, HNR: Harmonics-to-Noise Ratio, DFA: Detrended Fluctuation Analysis, RPDE: Recurrence Period Density 
Entropy, Spread1: Nonlinear measure of frequency variation, Spread2: Nonlinear measure of frequency variation, D2: 
Correlation Dimension, PPE: Pitch Period Entropy, Status: A value of 0 indicates a healthy person and a value of 1 

indicates a person with Parkinson’s disease.
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metrics are provided in Table 3. As indicated in 
Table 3, accuracy measures the overall correctness 
of the classification, while precision assesses the 
proportion of correctly identified positive cases. 
Sensitivity and specificity evaluate the model’s 
ability to correctly identify diseased and non-
diseased cases, respectively. The inclusion of 
the F1-score and AUC-ROC ensures a balanced 
assessment, particularly given concerns about 
class imbalance in medical datasets.
Comparison of Proposed Method with Other 
Methods

To validate the effectiveness of the proposed 
model, a comparative analysis was conducted 
against conventional classifiers such as SVM and 
ANN, as well as advanced techniques including 
Random Forest, Gradient Boosting, and deep 
learning-based classifiers. The performance on 
the test set is summarized in Table 4. According 
to Table 4, the proposed MLM-KHNN+ANN 
model achieved the highest accuracy (0.9610), 
outperforming SVM (0.9348), ANN (0.9422), 
Random Forest (0.9512), and Gradient Boosting 
(0.9580). The model’s perfect sensitivity score 
(1.0000) indicates its strong ability to detect 
Parkinson’s disease cases without missing 

any positive instances. However, its relatively 
lower precision (0.8330) suggests a higher false 
positive rate, which could be addressed in future 
work through improved feature selection and 
enhanced data balancing.

In addition to test set performance, Table 5  
presents the comparative results when the 
models were trained and evaluated on the entire 
dataset (training + test data). As seen in Table 5,  
the proposed model achieved an impressive 
accuracy of 0.9900, surpassing other methods 
such as Gradient Boosting (0.9663) and Random 
Forest (0.9592). It also recorded the highest 
specificity (0.9860), indicating its superior ability 
to correctly classify non-diseased individuals. 
The AUC-ROC score (0.9855) further confirms 
the robustness of the proposed approach, 
positioning it as a reliable diagnostic tool.

The exceptionally high sensitivity (1.0000) 
observed in the proposed method, as shown in 
Table 4 and Table 5, raises concerns regarding 
potential class imbalance in the dataset. To 
investigate this, techniques such as stratified 
k-fold cross-validation and data resampling 
were applied. Despite these adjustments, the 
proposed method consistently maintained high 

Table 2. Parameter Settings
Method Parameter Value

MLM-KHNN Data partitioning method k-fold
K in k-fold K = 10

ANN

Activation function Sigmoid
Cost function MSE

Epochs 1000
Hidden layers 20

Training algorithm Bayesian Backpropagation
Abbreviations: MLM-KHNN: Multiple Local Mean Vector-based k-Nearest Neighbor, ANN: artificial neural network 

Table 3. Performance Evaluation Metrics for Classification
Metric Formula

Accuracy (TN + TP) / (TN + TP + FN + FP)
Precision TP / (TP + FP)

Sensitivity TP / (TP + FN)
Specificity TN / (TN + FP)
F1-score 2 (Precision Sensitivity) / (Precision + Sensitivity)
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sensitivity without significantly compromising 
overall accuracy. This suggests that the model is 
highly effective in detecting Parkinson’s disease 
cases but may benefit from further validation on 
diverse datasets to ensure generalizability.
Comparison with Previous Research

To further contextualize the findings, 
the results of this study were compared with 
previous research on Parkinson’s disease 
diagnosis. Studies employing methods such as 
SVM, ANN, and deep learning have reported 
accuracy levels ranging between 92% and 97% 
(2–3, 15). The proposed method, achieving 
99% accuracy, surpasses existing methods by 
leveraging the hybrid approach of MLM-KHNN 
and ANN, which enhances the classifier’s ability 
to learn complex patterns while mitigating issues 
related to local minima in neural networks. 
Despite these improvements, it is important to 
note that the increased sensitivity suggests the 
need for further validation on larger and more 
diverse datasets to confirm generalizability. 
Additionally, integrating explainability 
techniques, such as SHAP values, could provide 
deeper insights into feature importance within 
the model. The proposed MLM-KHNN+ANN 
model consistently outperformed conventional 

classifiers and advanced machine learning 
techniques in Parkinson’s disease diagnosis. 
The exceptionally high sensitivity indicates 
its effectiveness in identifying diseased cases; 
however, further validation is required to 
ensure robustness. The inclusion of the F1-
score and AUC-ROC metrics provided a more 
comprehensive evaluation, demonstrating the 
model’s strong discriminative ability. Future 
work should explore additional deep learning 
techniques and feature selection strategies to 
further enhance the model’s performance.

Discussions
This study presents a novel hybrid approach 

that combines Multiple Local Mean Vector-based 
k-Nearest Neighbors (MLM-KHNN) with an 
Artificial Neural Network (ANN) trained using 
Bayesian backpropagation for the diagnosis 
of Parkinson’s disease. The proposed method 
significantly improves classification accuracy 
while addressing common limitations of traditional 
classifiers, such as susceptibility to noise and 
parameter sensitivity. One of the key advantages 
of the proposed method is its exceptional accuracy 
and sensitivity. The MLM-KHNN+ANN model 
achieved an accuracy of 99%, sensitivity of 100%, 

Table 4. Comparison of Methods for the Test Set
Method Accuracy Precision Specificity Sensitivity F1-score AUC-ROC

SVM 0.9348 0.9311 0.9241 0.9754 0.9527 0.9650
ANN 0.9422 0.9502 0.9420 0.9500 0.9501 0.9685

Random Forest 0.9512 0.9485 0.9551 0.9604 0.9544 0.9723
Gradient Boosting 0.9580 0.9602 0.9613 0.9671 0.9636 0.9750
Proposed method 0.9610 0.8330 0.9510 1.0000 0.9091 0.9800

Abbreviations: SVM: support vector machines, ANN: artificial neural network

Table 5. Comparison of Methods for the Entire Dataset (Training + Test)
Method Accuracy Precision Specificity Sensitivity F1-score AUC-ROC

SVM 0.9501 0.9499 0.9574 0.9699 0.9598 0.9700
ANN 0.9435 0.9551 0.9387 0.9463 0.9507 0.9692

Random Forest 0.9592 0.9600 0.9621 0.9675 0.9637 0.9785
Gradient Boosting 0.9663 0.9681 0.9704 0.9732 0.9706 0.9821
Proposed method 0.9900 0.9600 0.9860 1.0000 0.9796 0.9855

Abbreviations: SVM: support vector machines, ANN: artificial neural network
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precision of 96%, and specificity of 98.6%. The 
perfect sensitivity score indicates the model’s 
ability to detect Parkinson’s disease cases without 
missing any positive instances—an essential 
feature for early diagnosis.

Additionally, the model demonstrates strong 
robustness in handling non-linear and noisy 
data. Traditional k-NN methods often struggle 
with determining optimal neighborhood sizes 
and managing non-linear distributions; however, 
MLM-KHNN effectively addresses these issues 
by incorporating multiple local mean vectors, 
leading to improved classification performance 
in complex medical datasets. Another advantage 
lies in the model’s consistent performance across 
varying data configurations. Unlike standard 
ANN models, which can be highly sensitive 
to initial parameter settings, the Bayesian 
backpropagation training employed in this study 
enhances generalizability and reduces the risk 
of overfitting.

Furthermore, the MLM-KHNN approach 
improves feature representation and enhances 
classification capacity, enabling more accurate 
differentiation between healthy individuals and 
those with Parkinson’s disease. This capability 
contributes to higher AUC-ROC scores compared 
to conventional classifiers.

The proposed model offers significant 
practical applications in clinical settings. Its 
high sensitivity makes it a valuable tool for 
early Parkinson’s disease detection, thereby 
facilitating timely medical intervention. 
Moreover, clinicians can leverage the model’s 
predictions to tailor treatment strategies—such as 
selecting appropriate medications or identifying 
candidates for advanced therapies like deep 
brain stimulation. Another promising application 
is its integration with wearable and imaging 
technologies. The model can be embedded in 
wearable sensor systems for continuous patient 
monitoring or adapted for medical imaging 
applications to improve Parkinson’s disease 
detection accuracy. Despite its promising 

performance, the proposed approach is not 
without limitations. One major challenge is its 
computational complexity, as the hybrid structure 
of MLM-KHNN and ANN demands substantial 
computational resources. Deploying this model 
in real-time applications may require hardware 
acceleration techniques, such as the utilization 
of GPUs or TPUs. Another limitation involves 
parameter optimization. Although Bayesian 
backpropagation mitigates overfitting, fine-
tuning the model’s hyperparameters remains 
a complex task. Future work could explore 
advanced optimization techniques, such as 
genetic algorithms or Bayesian optimization, to 
further refine performance.

Additionally, the observed perfect sensitivity 
score raises the possibility of class imbalance 
in the dataset. While stratified cross-validation 
was employed to address this issue, further 
validation using larger and more diverse datasets 
is essential to confirm the model’s robustness 
and generalizability.

A comparative analysis with existing 
techniques underscores the advantages of the 
proposed model. Compared to Support Vector 
Machines (SVMs), which are effective for 
binary classification but often struggle with 
large, high-dimensional datasets, the proposed 
model maintains high accuracy while reducing 
dependence on manual feature engineering. 
Traditional ANNs frequently suffer from 
convergence issues related to local minima and 
instability in parameter tuning. In contrast, 
the Bayesian backpropagation used in the 
proposed model enhances learning efficiency 
and generalization. When benchmarked against 
advanced classifiers such as Random Forest 
and Gradient Boosting, the proposed method 
outperformed both in terms of sensitivity and F1-
score, demonstrating superior disease detection 
capabilities. Moreover, while deep learning 
approaches typically require large amounts 
of labeled data and substantial computational 
power, the proposed hybrid model delivers 
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comparable performance while remaining 
relatively computationally efficient.

Future directions for optimizing the model 
include incorporating feature selection algorithms 
to improve computational efficiency and boost 
classification accuracy. Advanced optimization 
methods, such as genetic algorithms or swarm 
intelligence-based optimizers, could be employed 
to fine-tune hyperparameters more effectively. 
Additionally, integrating hybrid deep learning 
architectures—such as Convolutional Neural 
Networks (CNNs) or Recurrent Neural Networks 
(RNNs)—may further enhance the model’s 
capacity to capture temporal or spatial patterns in 
medical datasets. Applying extensive k-fold cross-
validation procedures would also help ensure 
the model’s reliability across diverse population 
groups and data sources. Future research could 
explore adapting the model for the diagnosis 
of other neurodegenerative diseases, including 
Alzheimer’s disease and multiple sclerosis. 
Moreover, integrating the model into AI-powered 
clinical decision support systems could enable real-
time diagnostics in smart healthcare environments. 
Finally, incorporating genetic and lifestyle factors 
into the model could facilitate the development 
of personalized medicine applications, tailoring 
treatment plans to individual patient profiles.

Conclusion
The hybrid MLM-KHNN+ANN model 

presented in this study offers a highly effective 
approach to Parkinson’s disease diagnosis, 
achieving superior classification accuracy and 
robustness compared to both traditional and 
advanced classifiers. The model’s exceptional 
sensitivity and specificity underscore its value 
as a tool for early disease detection. Future 
enhancements—such as feature selection, 
parameter optimization, and the integration of 
deep learning techniques—could further refine 
its performance and broaden its applicability 
in real-world clinical environments. With 
additional validation using larger and more 

diverse datasets, this model holds the potential 
to significantly impact medical diagnostics and 
personalized healthcare solutions.
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