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Background & Objectives: Parkinson’s disease (PD) is a neurological disorder
characterized by the progressive loss of brain cells, significantly affecting body movement.
Early diagnosis not only reduces healthcare costs but also helps prevent adverse outcomes
for patients. Researchers are increasingly utilizing intelligent machine learning methods
to enhance the accuracy and efficiency of PD diagnosis.

Materials & Methods: Although several data mining techniques have achieved reasonable
accuracy in diagnosing PD, they often encounter trade-offs between accuracy and
execution speed and are sensitive to parameter settings and data outliers. The k-Nearest
Neighbors (KNN) algorithm, for example, is valued for its simplicity and speed but
suffers from limitations such as sensitivity to neighborhood size and reliance on majority
voting, both of which can degrade performance. To address these challenges, this study
employs an advanced variant of the KNN algorithm, referred to as Multiple Local Mean
Vector-based Nearest Neighbor Classification (MLMV-NNC), alongside a neural network
classifier trained using Bayesian backpropagation. The MLMV-NNC method enhances
traditional KNN by incorporating multiple local mean vectors, thereby reducing the
influence of outliers and improving classification robustness.

Results: The proposed diagnostic approach demonstrates superior performance in
detecting PD. Specifically, the model achieves an accuracy of 99%, precision of 96%,
specificity of 98.6%, and sensitivity of 100%. Furthermore, a comparative analysis with
traditional methods, including Support Vector Machines (SVM) and Artificial Neural
Networks (ANN), highlights the superior performance of the proposed method.
Conclusion: The findings indicate that the combination of MLMV-NNC and a neural
network trained via Bayesian backpropagation constitutes a highly effective approach
for diagnosing PD. This method not only improves accuracy but also mitigates common
challenges such as sensitivity to parameter settings and data outliers, offering a promising
alternative to conventional classification techniques.
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Introduction 1% of the population over the age of 55, with its
Parkinson’s Disease (PD) is a progressive prevalence increasing significantly with age (1).
neurological disorder that affects approximately Thediseaseis characterized by the degeneration of
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dopaminergic neurons in the substantia nigra pars
compacta (SNc) and the presence of Lewy bodies,
which are intracellular inclusions primarily
composed of a-synuclein and ubiquitin (2).
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This neuronal loss leads to a depletion of
dopamine in the striatum, which disrupts both
motor and non-motor functions. Clinically,
PD manifests with symptoms such as tremors,
bradykinesia (slowness of movement), rigidity,
and postural instability, as well as non-motor
symptoms including sleep disturbances, speech
variability, and loss of smell (3). While the exact
mechanisms underlying PD remain incompletely
understood, oxidative stress, mitochondrial
dysfunction, and neuroinflammation are
widely recognized as key contributors to
neurodegeneration (4). Early diagnosis is critical,
as PD is irreversible and progressively worsens,
often leading to severe disability and a reduced
quality of life (5).

In recent years, machine learning (ML)
and artificial intelligence (Al) techniques have
emerged as promising tools for enhancing PD
diagnosis (6). Traditional diagnostic methods,
which rely on clinical observations and
subjective assessments, can be enhanced by
integrating ML algorithms capable of analyzing
complex datasets. For instance, gait analysis,
a non-invasive and cost-effective approach,
has shown potential in detecting PD through
changes in walking patterns (7). Similarly,
ML models can process diverse data types,
such as speech recordings, MRI images, and
wearable sensor data, to detect early signs of
the disease with higher accuracy (8). However,
existing methods face significant challenges,
including high computational costs, dependency
on large datasets, and limitations in managing
multidimensional data structures (9).

Techniques such as regression, k-Nearest
Neighbor (k-NN), and Artificial Neural
Networks (ANNs) often struggle with issues
such as early convergence, local minima (10),
and sensitivity to parameter settings (11). Recent
advancements in Al have introduced more
sophisticated approaches, such as Deep Neural
Networks (DNNs) and Convolutional Neural
Networks (CNNs), which offer higher accuracy
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in PD diagnosis (12). For example, Abumalloh
et al. (13) demonstrated that deep learning (DL)
methods outperform traditional ML approaches
in identifying PD, particularly when analyzing
large datasets. Their bibliometric analysis
highlighted the growing global interest in DL-
based diagnostic methods, though they identified
a research gap related to incremental learning
techniques for big data analysis. Similarly, Sigcha
et al. (14) reviewed the use of wearable devices
combined with DL algorithms for continuous
monitoring of PD symptoms. Their study, which
analyzed 69 research papers, found that inertial
sensors and CNNs were the most commonly
used tools, with motor symptoms being more
frequently studied than non-motor symptoms.
Despite the potential of these technologies,
challenges such as data variability and the need
for standardized validation methods remain.

Tanveer et al. (15) conducted a comprehensive
review of DNNs for PD diagnosis, noting their
high accuracy but also their computational
expense and hardware requirements. They
emphasized the need for cost-effective solutions to
facilitate the widespread clinical adoption of these
technologies. Vyas et al. (16) proposed a 3D CNN
model for analyzing brain MRI images, achieving
an accuracy of 88.9%, which outperformed their
2D CNN model. Their approach utilized advanced
preprocessing techniques, such as bias field
correction and Z-score normalization, to enhance
feature extraction from MRI data. Rajalaxmi et
al. (17) introduced an improved binary grey wolf
optimizer (BIGWO) for feature selection in PD
diagnosis, demonstrating enhanced classification
performance through adaptive k-NN (AkNN).
Their work highlighted the importance
of optimizing feature selection to boost
diagnostic accuracy.

Despite these advancements, challenges such
as computational inefficiency, data dependency,
and the need for costly hardware persist. To
address these limitations, this study proposes
a novel hybrid approach that combines the
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strengths of Multiple Local Mean Vector-
based k-Nearest Neighbor (MLM-KHNN)
and neural networks. MLM-KHNN improves
upon traditional k-NN by addressing issues
associated with feature weighting and majority
voting, while neural networks enhance feature
processing and relationship mapping. This hybrid
model aims to optimize accuracy, precision, and
computational efficiency, offering a standalone,
offline diagnostic tool for early PD detection. By
integrating the advantages of both methods, this
approach seeks to overcome the limitations of
existing techniques and provide a more reliable,
cost-effective solution for clinical applications.

Methods and Materials

In this research, we examine a method for
diagnosing PD using classification techniques
such as ANN and the Multiple Local Mean
(MLM)-KHNN algorithm. To apply data
mining in diagnostic areas like disease detection,
machine learning algorithms must be utilized
to process information stored in databases.
Various machine learning methods exist in this
domain, and in this study, due to the criteria of
speed, simplicity, and quick execution time, we
focused on approaches that are both efficient and
computationally feasible.

One of the most prominent, simple, and fast
machine learning methods in data mining is
KNN and the ANN approach (15). Despite its
simplicity and speed, the KNN method faces
significant challenges, such as dependence on
majority voting, the difficulty of selecting an
appropriate value for the neighborhood size
parameter (k) (which requires extensive trial
and error), and the equal treatment of all data
points, regardless of their proximity to the query
point. To address these limitations, in 2017,
Zebin Pan et al. (2) introduced an advanced
version of this algorithm, which, through
multi-neighborhood selection and averaging
multiple vectors, mitigates these challenges. This
version not only retains simplicity and speed
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but also demonstrates enhanced performance
in appropriately handling data with both linear
and non-linear features.

Consequently, this research integrates the
advanced version of KNN with a multilayer
perceptron neural network (ANN) equipped
with a Bayesian backpropagation algorithm for
Parkinson’s disease diagnosis. Machine learning
methods, as intelligent data-driven approaches,
require the division of data into two subsets:
training and testing. In the training phase, both
data features and decision-making features (class
labels) are considered, while in the testing phase,
only the data features are included. Classification
methods are trained using the full information
of the training data, including both data
features and decision-making features, so that
the classifier can evolve into a well-informed
model. The testing data are then processed by the
classifiers, and predictions are made regarding
class labels (indicating the presence or absence of
the disease). The predicted labels are compared
with the actual labels to calculate classification
errors and overall accuracy.

According to Figure 1, the detailed steps of the
classification method for diagnosing Parkinson’s
disease are described as follows:

Data: he Parkinson’s disease database,
extracted from the UCI repository, was used.
The dataset was split into training and testing
sets in a 70:30 ratio to initiate the proposed
diagnostic method.

Training the Classifier: The ensemble
classifier based on ANN and MLM-KHNN
was trained using the training data, enabling
the classifier to develop into a well-informed
model capable of diagnosing the disease when
presented with data features. The ANN and
MLM-KHNN classifiers were combined to
optimize the diagnosis of Parkinson’s disease.
The relevant data were fed into the proposed
combined method for the learning process.
The MLM-KHNN method (multi-local mean
nearest neighbors) was used for classification.
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Figure 1. The Group Classification Process

To optimize the learning process, the output of
the MLM-KHNN method was fed into a neural
network with 20 hidden layers. While this number
of layers facilitates deeper data processing,
careful tuning of neural network parameters
was performed to minimize overfitting and
maximize computational efficiency.

Output Section: The final classification of
the data was performed based on two categories:
healthy individuals and Parkinson’s patients.

The detailed workings of each classifier
(MLM-KHNN and ANN) for Parkinson’s disease
diagnosis are explained as follows. Each of these
classification methods was used to classify high-
dimensional feature vectors due to their greater
accuracy and precision in handling such data. The
primary concept of the MLM-KHNN classifier
is derived from the classification of classes by
training feature vectors from various database
sets. The extracted feature vectors were used as
input to the classifier, and the data were randomly
divided into two parts: training and testing. The
training set was used to train the classifier, while
the testing set was used to validate its performance.
Feature computation and classification using
MLM-KHNN were conducted in MATLAB.
The k-fold cross-validation method was used
to divide the dataset into training and testing
sections. There are different methods for splitting
the dataset, such as k-fold, 70:30, or 90:10 splits.
In this study, the k-fold method was used for the
MLM-KHNN algorithm. Evaluation is a tool for
assessing the research method by dividing the
dataset into training and testing sections, where
the entire dataset is split into (k) parts. Each time,
one of the (k) parts (a fold) is considered the test
set, while the remaining (k-1) parts are used as the

training set. In cross-validation, the data samples
are first divided into (k) parts, ensuring that the
volume of these parts is approximately equal
whenever possible. Among these (k) parts, one
is set aside as the test set, while the remaining
(k-1) parts are used as the training set. Using this
model, predictions are made on the test set data,
and the model’s accuracy is calculated using an
appropriate loss function. Then, another of the
(k) parts is chosen as the test set, and the process
is repeated. Consequently, every data sample in
the original set is predicted once.
Dataset

In this research, the Parkinson’s disease
database available on the UCI website was used
to test the proposed data mining method based
on the MLM-KHNN-+ANN ensemble classifier
for the diagnosis of Parkinson’s disease. The
database contains 22 data features (independent
variables) and one output (dependent variable)
named “Status,” with two values: “disease” (1)
and “healthy” (0). The details of the features and
output of the database are provided in Table 1.
This dataset is derived from a wide range of
biomedical acoustic measurements taken
from 195 individuals, including 147 patients
with Parkinson’s disease (PD) and 48 healthy
individuals. Each column in the table represents
a specific acoustic measurement, while each row
corresponds to one of the 197 recorded sounds
from these individuals. The data labels are
assigned as 1 for PD patients and O for healthy
individuals (1-5, 13—15).

Results
Simulation Environment and Parameters
The proposed method was implemented using
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Table 1. Parkinson’s disease Database from UCI

Variable name
1 MDVP: Fo(Hz)
2 MDVP: Fhi(Hz)
3 MDVP: Flo(Hz)
4 MDVP: Jitter(%)
5 MDVP: Jitter(Abs)
6 MDVP: RAP
7 MDVP: PPQ
8 Jitter:DDP
9 MDVP: shimmer
10 MDVP: shimmer(Db)
11 Shimmer: APQ3
12 Shimmer: APQ5
13 Shimmer: APQ
14 Shimmer: DDA
15 NHR
16 HNR
17 DFA
18 RPDE
19 Spreadl
20 Spread?2
21 D2
22 PPE
23 Status

Parameter
Average audio frequency
Maximum audio frequency
Audio frequency minimum
Audio frequency changes in percentage
Audio frequency changes in microsecond
Audio frequency changes of relative amplitude
Audio frequency changes
Audio frequency changes

Features domain changes

Quality of presence of noise
Noise quality
Detrended DFA volatility analysis
Entropy density measurement

Nonlinear measurement of frequency

Correlation rate
Non-linearity of PPE frequency
A value of 0 indicates a healthy person and a value of 1
indicates a person with Parkinson’s disease

Abbreviations: MDVP: Multi-Dimensional Voice Program, Fo(Hz): Fundamental Frequency, Fhi(Hz): Maximum
Frequency, Flo(Hz): Minimum Frequency, Jitter(%): Jitter (percent), Jitter(Abs): Jitter (absolute), RAP: Relative Amplitude
Perturbation, PPQ: Pitch Period Perturbation, DDP: Differential Deviation of Pitch, Shimmer: Shimmer, Shimmer(Db):
Shimmer (decibels), APQ3: Amplitude Perturbation Quotient (3rd order), APQ5: Amplitude Perturbation Quotient (5th
order), APQ: Amplitude Perturbation Quotient, DDA: Differential Deviation of Amplitude, NHR: Noise-to-Harmonics
Ratio, HNR: Harmonics-to-Noise Ratio, DFA: Detrended Fluctuation Analysis, RPDE: Recurrence Period Density
Entropy, Spreadl: Nonlinear measure of frequency variation, Spread2: Nonlinear measure of frequency variation, D2:
Correlation Dimension, PPE: Pitch Period Entropy, Status: A value of 0 indicates a healthy person and a value of 1
indicates a person with Parkinson’s disease.

MATLAB R2024b and executed on a system with
16 GB of RAM, a 7-core processor, and Windows
10 (64-bit). The ANN classification algorithm was
developed using MATLAB’s Neural Network
Toolbox, with the relevant neural network codes
generated and customized according to the
study’s requirements. The key parameter settings
for the implemented classification methods are
summarized in Table 2.

Table 2 outlines the essential configurations
used for training the models, including the 10-
fold cross-validation approach (k = 10) for MLM-
KHNN and Bayesian backpropagation training
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for ANN. Notably, the neural network was
structured with 20 hidden layers and trained over
1000 epochs to ensure comprehensive learning.
While this deep architecture enhances accuracy,
it also necessitates significant computational
resources, highlighting a key challenge for real-
time applications.
Evaluation Metrics

To evaluate the performance of the proposed
MLM-KHNN+ANN model, various statistical
metrics were employed, including accuracy,
precision, specificity, sensitivity, Fl-score, and
AUC-ROC. The formulas for calculating these
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Table 2. Parameter Settings

Method Value
Data partitioning method k-fold
MEM-KCHNN K in k-fold K= 10
Activation function Sigmoid
Cost function MSE
ANN Epochs 1000
Hidden layers 20

Training algorithm

Bayesian Backpropagation

Abbreviations: MLM-KHNN: Multiple Local Mean Vector-based k-Nearest Neighbor, ANN: artificial neural network

Table 3. Performance Evaluation Metrics for Classification

Accuracy (TN + TP) /(TN + TP + FN + FP)
Precision TP /(TP + FP)
Sensitivity TP /(TP + EN)
Specificity TN /(TN + FP)
Fl-score 2 (Precision Sensitivity) / (Precision + Sensitivity)

metrics are provided in Table 3. As indicated in
Table 3, accuracy measures the overall correctness
of the classification, while precision assesses the
proportion of correctly identified positive cases.
Sensitivity and specificity evaluate the model’s
ability to correctly identify diseased and non-
diseased cases, respectively. The inclusion of
the Fl-score and AUC-ROC ensures a balanced
assessment, particularly given concerns about
class imbalance in medical datasets.
Comparison of Proposed Method with Other
Methods

To validate the effectiveness of the proposed
model, a comparative analysis was conducted
against conventional classifiers such as SVM and
ANN, as well as advanced techniques including
Random Forest, Gradient Boosting, and deep
learning-based classifiers. The performance on
the test set is summarized in Table 4. According
to Table 4, the proposed MLM-KHNN+ANN
model achieved the highest accuracy (0.9610),
outperforming SVM (0.9348), ANN (0.9422),
Random Forest (0.9512), and Gradient Boosting
(0.9580). The model’s perfect sensitivity score
(1.0000) indicates its strong ability to detect
Parkinson’s disease cases without missing

any positive instances. However, its relatively
lower precision (0.8330) suggests a higher false
positive rate, which could be addressed in future
work through improved feature selection and
enhanced data balancing.

In addition to test set performance, Table 5
presents the comparative results when the
models were trained and evaluated on the entire
dataset (training + test data). As seen in Table 5,
the proposed model achieved an impressive
accuracy of 0.9900, surpassing other methods
such as Gradient Boosting (0.9663) and Random
Forest (0.9592). It also recorded the highest
specificity (0.9860), indicating its superior ability
to correctly classify non-diseased individuals.
The AUC-ROC score (0.9855) further confirms
the robustness of the proposed approach,
positioning it as a reliable diagnostic tool.

The exceptionally high sensitivity (1.0000)
observed in the proposed method, as shown in
Table 4 and Table 5, raises concerns regarding
potential class imbalance in the dataset. To
investigate this, techniques such as stratified
k-fold cross-validation and data resampling
were applied. Despite these adjustments, the
proposed method consistently maintained high
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Table 4. Comparison of Methods for the Test Set

Method Specificity | Sensitivity AUC-ROC

SVM 0.9348 0.9311 0.9241 0.9754 0.9527 0.9650

ANN 0.9422 0.9502 0.9420 0.9500 0.9501 0.9685
Random Forest 0.9512 0.9485 0.9551 0.9604 0.9544 0.9723
Gradient Boosting 0.9580 0.9602 0.9613 0.9671 0.9636 0.9750
Proposed method 0.9610 0.8330 0.9510 1.0000 0.9091 0.9800

Abbreviations: SVM: support vector machines, ANN: artificial neural network

Table 5. Comparison of Methods for the Entire Dataset (Training + Test)

AUC-ROC

SVM 0.9501 0.9499 0.9574 0.9699 0.9598 0.9700

ANN 0.9435 0.9551 0.9387 0.9463 0.9507 0.9692
Random Forest 0.9592 0.9600 0.9621 0.9675 0.9637 0.9785
Gradient Boosting 0.9663 0.9681 0.9704 0.9732 0.9706 0.9821
Proposed method 0.9900 0.9600 0.9860 1.0000 0.9796 0.9855

Abbreviations: SVM: support vector machines, ANN: artificial neural network
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sensitivity without significantly compromising
overall accuracy. This suggests that the model is
highly effective in detecting Parkinson’s disease
cases but may benefit from further validation on
diverse datasets to ensure generalizability.
Comparison with Previous Research

To further contextualize the findings,
the results of this study were compared with
previous research on Parkinson’s disease
diagnosis. Studies employing methods such as
SVM, ANN, and deep learning have reported
accuracy levels ranging between 92% and 97%
(2-3, 15). The proposed method, achieving
99% accuracy, surpasses existing methods by
leveraging the hybrid approach of MLM-KHNN
and ANN, which enhances the classifier’s ability
to learn complex patterns while mitigating issues
related to local minima in neural networks.
Despite these improvements, it is important to
note that the increased sensitivity suggests the
need for further validation on larger and more
diverse datasets to confirm generalizability.
Additionally,  integrating  explainability
techniques, such as SHAP values, could provide
deeper insights into feature importance within
the model. The proposed MLM-KHNN+ANN
model consistently outperformed conventional
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classifiers and advanced machine learning
techniques in Parkinson’s disease diagnosis.
The exceptionally high sensitivity indicates
its effectiveness in identifying diseased cases;
however, further validation is required to
ensure robustness. The inclusion of the Fl1-
score and AUC-ROC metrics provided a more
comprehensive evaluation, demonstrating the
model’s strong discriminative ability. Future
work should explore additional deep learning
techniques and feature selection strategies to
further enhance the model’s performance.

Discussions

This study presents a novel hybrid approach
that combines Multiple Local Mean Vector-based
k-Nearest Neighbors (MLM-KHNN) with an
Artificial Neural Network (ANN) trained using
Bayesian backpropagation for the diagnosis
of Parkinson’s disease. The proposed method
significantly improves classification accuracy
while addressing common limitations of traditional
classifiers, such as susceptibility to noise and
parameter sensitivity. One of the key advantages
of the proposed method is its exceptional accuracy
and sensitivity. The MLM-KHNN+ANN model
achieved an accuracy of 99%, sensitivity of 100%,



http://dx.doi.org/10.18502/jabs.v15i2.18083
http://jabs.fums.ac.ir/article-1-3121-en.html

[ Downloaded from jabs.fums.ac.ir on 2025-11-22 ]

[ DOI: 10.18502/jabs v15i2.18083 ]

W

Journal of Advanced
Biomedical Sciences

precision of 96%, and specificity of 98.6%. The
perfect sensitivity score indicates the model’s
ability to detect Parkinson’s disease cases without
missing any positive instances—an essential
feature for early diagnosis.

Additionally, the model demonstrates strong
robustness in handling non-linear and noisy
data. Traditional k-NN methods often struggle
with determining optimal neighborhood sizes
and managing non-linear distributions; however,
MLM-KHNN effectively addresses these issues
by incorporating multiple local mean vectors,
leading to improved classification performance
in complex medical datasets. Another advantage
lies in the model’s consistent performance across
varying data configurations. Unlike standard
ANN models, which can be highly sensitive
to initial parameter settings, the Bayesian
backpropagation training employed in this study
enhances generalizability and reduces the risk
of overfitting.

Furthermore, the MLM-KHNN approach
improves feature representation and enhances
classification capacity, enabling more accurate
differentiation between healthy individuals and
those with Parkinson’s disease. This capability
contributes to higher AUC-ROC scores compared
to conventional classifiers.

The proposed model offers significant
practical applications in clinical settings. Its
high sensitivity makes it a valuable tool for
early Parkinson’s disease detection, thereby
facilitating timely medical intervention.
Moreover, clinicians can leverage the model’s
predictions to tailor treatment strategies—such as
selecting appropriate medications or identifying
candidates for advanced therapies like deep
brain stimulation. Another promising application
is its integration with wearable and imaging
technologies. The model can be embedded in
wearable sensor systems for continuous patient
monitoring or adapted for medical imaging
applications to improve Parkinson’s disease
detection accuracy. Despite its promising

Fasa University of
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performance, the proposed approach is not
without limitations. One major challenge is its
computational complexity, as the hybrid structure
of MLM-KHNN and ANN demands substantial
computational resources. Deploying this model
in real-time applications may require hardware
acceleration techniques, such as the utilization
of GPUs or TPUs. Another limitation involves
parameter optimization. Although Bayesian
backpropagation mitigates overfitting, fine-
tuning the model’s hyperparameters remains
a complex task. Future work could explore
advanced optimization techniques, such as
genetic algorithms or Bayesian optimization, to
further refine performance.

Additionally, the observed perfect sensitivity
score raises the possibility of class imbalance
in the dataset. While stratified cross-validation
was employed to address this issue, further
validation using larger and more diverse datasets
is essential to confirm the model’s robustness
and generalizability.

A comparative analysis with existing
techniques underscores the advantages of the
proposed model. Compared to Support Vector
Machines (SVMs), which are effective for
binary classification but often struggle with
large, high-dimensional datasets, the proposed
model maintains high accuracy while reducing
dependence on manual feature engineering.
Traditional ANNSs frequently suffer from
convergence issues related to local minima and
instability in parameter tuning. In contrast,
the Bayesian backpropagation used in the
proposed model enhances learning efficiency
and generalization. When benchmarked against
advanced classifiers such as Random Forest
and Gradient Boosting, the proposed method
outperformed both in terms of sensitivity and F1-
score, demonstrating superior disease detection
capabilities. Moreover, while deep learning
approaches typically require large amounts
of labeled data and substantial computational
power, the proposed hybrid model delivers

155



http://dx.doi.org/10.18502/jabs.v15i2.18083
http://jabs.fums.ac.ir/article-1-3121-en.html

[ Downloaded from jabs.fums.ac.ir on 2025-11-22 ]

[ DOI: 10.18502/jabs v15i2.18083 ]

W

Journal of Advanced
Biomedical Sciences

Hosseinpoor MJ
comparable performance while remaining
relatively computationally efficient.

Future directions for optimizing the model
include incorporating feature selection algorithms
to improve computational efficiency and boost
classification accuracy. Advanced optimization
methods, such as genetic algorithms or swarm
intelligence-based optimizers, could be employed
to fine-tune hyperparameters more effectively.
Additionally, integrating hybrid deep learning
architectures—such as Convolutional Neural
Networks (CNNs) or Recurrent Neural Networks
(RNNs)—may further enhance the model’s
capacity to capture temporal or spatial patterns in
medical datasets. Applying extensive k-fold cross-
validation procedures would also help ensure
the model’s reliability across diverse population
groups and data sources. Future research could
explore adapting the model for the diagnosis
of other neurodegenerative diseases, including
Alzheimer’s disease and multiple sclerosis.
Moreover, integrating the model into Al-powered
clinical decision support systems could enable real-
time diagnostics in smart healthcare environments.
Finally, incorporating genetic and lifestyle factors
into the model could facilitate the development
of personalized medicine applications, tailoring
treatment plans to individual patient profiles.

Conclusion

The hybrid MLM-KHNN+ANN model
presented in this study offers a highly effective
approach to Parkinson’s disease diagnosis,
achieving superior classification accuracy and
robustness compared to both traditional and
advanced classifiers. The model’s exceptional
sensitivity and specificity underscore its value
as a tool for early disease detection. Future
enhancements—such as feature selection,
parameter optimization, and the integration of
deep learning techniques—could further refine
its performance and broaden its applicability
in real-world clinical environments. With
additional validation using larger and more
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diverse datasets, this model holds the potential
to significantly impact medical diagnostics and
personalized healthcare solutions.
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